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Zusammenfassung 
Trotz der Bedeutung für das Verständnis der Zusammenhänge von 
Luftverschmutzung und Lärmbelastung und dem Verlust neurokognitiver 
Leistungsfähigkeit sind Studien begrenzt, die diese Expositionen und die 
Hirnstruktur untersuchen. 

Ziel der vorliegenden Studie war es, die Assoziationen zwischen Langzeit-
Luftverschmutzung und -Lärmbelastung, neurokognitiver Testleistung und 
lokaler Hirnatrophie bei älteren Erwachsenen, gemessen mittels des lokalen 
Gyrifizierungsindex (lGI), zu untersuchen. 

Für n = 615 Teilnehmer der bevölkerungsbasierten 1000BRAINS-Studie, die 
auf der Heinz Nixdorf Recall-Studie basiert, wurde die Exposition gegenüber 
Feinstaub (PM10, PM2.5, PM2.5abs), die Partikelanzahl im Akkumulationsmodus 
(PNAM), Stickoxide (NOX, NO2) und die Entfernung zur nächstgelegenen 
Hauptstraße mithilfe der ESCAPE-Landnutzungsregression und der räumlich-
zeitlichen EURopean Air Pollution Dispersion (EURAD) –Transportmodelle 
bestimmt. Gewichteter 24-Stunden- sowie Nachtlärm wurden gemäß der 
europäischen Lärmschutzrichtlinie modelliert. Es wurden die Assoziationen 
zwischen Luftverschmutzung und Lärmbelastung an der Wohnadresse in den 
Jahren 2006-2008 und der neurokognitiven Testleistung, die von 2011 bis 2015 
erfasst wurden, unter Verwendung linearer Regression und unter 
Berücksichtigung demografischer und persönlicher Merkmale analysiert. 
Hierdurch wurden Hirnregionen mit potenzieller Relevanz identifiziert. Die IGI-
Werte in diesen Regionen wurden mit Magnetresonanztomographie (MRT) 
(durchgeführt von 2011-2015) erfasst. Mit Hilfe der linearen Regression wurden 
die Assoziationen zwischen Umweltexpositionen und IGI-Werten (n = 590) 
unter Berücksichtigung demografischer und Lebensstilvariablen geschätzt. 

Luftverschmutzung und Lärmbelastung zeigten eine Assoziation mit der 
Sprache und dem Kurzzeit- / Arbeitsgedächtnis sowie mit der Gehirnstruktur 
des Fronto-Parietal-Netzwerks (FPN), einem funktionalen Ruhenetzwerk, das 
mit diesen kognitiven Prozessen assoziiert ist. Luftverschmutzung war mit 
niedrigeren IGI-Werten in posterioren Regionen des FPN assoziiert (z. B. -0,02 
[95% Konfidenzintervall (CI): -0,04, 0,00] pro 2 ug / m³ PM10 im posterioren 
parietalen Kortex und Precuneus). Im rechten dorsolateralen präfrontalen 
Kortex waren gewichteter 24-Stunden- sowie Nachtlärm mit höheren IGI-
Werten assoziiert (z. B. 0,02 [95% CI: 0,00, 0,04] für 10 dB[A] 24-Stunden-
Lärm). 

Langzeit-Luftverschmutzung und Lärmexposition waren bei älteren 
Erwachsenen mit Unterschieden in der Gehirnstruktur des 
rechtshemisphärischen FPN verbunden, was entsprechend bekannten Theorien 
zur Gehirnalterung darauf hindeutet, dass Luftverschmutzung und 
Lärmexposition den Alterungsprozess des Gehirns beeinflussen können. 
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Abstract 
Despite importance for understanding associations of air pollution (AP) and 
noise exposure with loss of neurocognitive performance, studies investigating 
these exposures and brain structure are limited.  

The objective of this thesis was to estimate associations between long-term AP 
and noise exposures, neurocognitive test performance, and local Gyrification 
Indices (lGI), a marker for local brain atrophy, among older adults.  

For n=615 participants from the population-based 1000BRAINS study, which is 
based on the Heinz Nixdorf Recall study, residential exposures to particulate 
matter (PM10, PM2.5, PM2.5abs), accumulation mode particle number (PNAM), 
nitrogen oxides (NOX, NO2),  and distance to the nearest major road were 
assessed using the ESCAPE land use regression and spatiotemporal 
EURopean Air pollution Dispersion (EURAD) chemistry transport models. 
Weighted 24h and nighttime noise were modeled according to the European 
noise directive. Associations between AP and noise exposures at the 2006-
2008 residential address and neurocognitive test performance were assessed 
2011-2015, using linear regression, adjusting for demographic and personal 
characteristics. Brain regions of potential relevance were identified and lGI 
values in those regions were quantified using magnetic resonance imaging 
(MRI) data from 2011-2015. Using linear regression associations between 
environmental exposures and lGI values (n=590) were estimated, adjusting for 
demographic and lifestyle variables. 

AP and noise exposure were associated with language and short-term/working 
memory and with brain structure of the fronto-parietal network (FPN), a 
functional resting-state network associated with these cognitive processes. AP 
exposure was associated with lower lGI values in posterior regions of the FPN 
(e.g., -0.02 [95% confidence interval (CI): -0.04, 0.00] per 2 μg/m3 PM10 in the 
posterior parietal cortex and precuneus). In the right dorsolateral prefrontal 
cortex, weighted 24h and nighttime noise were associated with higher lGI 
values (e.g., 0.02 [95% CI: 0.00, 0.04] for 10 dB[A] 24h noise). 

Long-term AP and noise exposures were associated with differences in brain 
structure of the right hemispheric FPN in older adults, indicating AP and noise 
exposure may influence the physiological aging process of the brain. 
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Abbreviations 
AP air pollution 
ATP adenosine triphosphate 
BC black carbon 
BET brain extraction 
BMI body mass index 
CES-D Center for Epidemiologic Studies Depression scale 
CHD coronary heart disease 
dB[A] decibel 
Distmajroad distance to the nearest major road 
DLPFC dorsolateral prefrontal cortex 
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EEG electroencephalography 
EPI echo planar imaging 
ESCAPE European Study of Cohorts for AP Effects 
ETS environmental tobacco smoke 
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FMRIB Functional Magnetic Resonance Imaging of the Brain 
FoV field of view 
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FSL Functional Magnetic Resonance Imaging of the Brain Software Library 
FU1 first follow up 
(l)GI (local) gyrification index 
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IQR interquartile range 
ISCED International Standard Classification of Education 
IUTA Institute of Energy and Environmental Technology 
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LDEN weighted 24h noise 
Lnight nighttime noise 
LUR land use regression 
MELODIC Multivariate Exploratory Linear Optimized Decomposition into Independent 

Components 
MPRAGE magnetization-prepared rapid acquisition gradient-echo 
(f)MRI (functional) magnetic resonance imaging 
mRNA messenger ribonucleic acid 
NMDA N-Methyl-D-Aspartat 
NO nitrogen monoxide 
NO2 nitrogen dioxide 
NOX nitrogen oxides 
PASA posterior-anterior shift in aging theory 
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PCC/P posterior cingulate cortex and precuneus 
PM particulate matter 
PM2.5 particulate matter with an average aerodynamic diameter  below 2.5 

micrometer 
PM2.5 abs PM2.5 absorbance 
PM10 particulate matter with an average aerodynamic diameter below 10 

micrometer 
PNAM accumulation mode particle number  
rh right hemisphere 
ROI region of interest 
SES socioeconomic status 
SPM8 Statistical Parametric Modeling 
TNF-α tumor necrosis factor – alpha 
TE echo time 
TR repetition time 
(q)UFP (quasi) ultra-fine particles 
UNESCO United Nations Educational, Scientific and Cultural Organization 
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1 Introduction 
In the course of man-made climate change and increasing environmental 

pollution ever more people are realizing the devastating consequences of it. 

Thus evaluating adverse effects of air pollution not only on the environment but 

also on human health has become gradually more important. Now that current 

diesel exhaust scandals further the public discussion on the matter, the 

pressure on politicians continuously rises. So does the demand for stricter limits 

of various air pollution components. But in order to set those limits to the right 

level, research needs to be done to show the extent to which actual adverse 

health effects of air pollution exist. This rationale illustrates the relevance of the 

following dissertation and the importance of contributing to the consolidation 

and advancement of the current state of knowledge on adverse health effects of 

air pollution.      

 

1.1 Environmental Exposures 
1.1.1 Air Pollution 
The term air pollution (AP) represents different airborne particles (liquid and 

solid) and gaseous components of different chemical composition. It can be 

further classified by particle size as well as according to its source of origin (Air 

Quality Guidelines Global Update 2005, Who, 2006):  

One major component of AP is particulate matter (PM). Particles with an 

average aerodynamic diameter of less than 10 micrometers (μm) are referred to 

as PM10 or coarse particles. Particles with an average aerodynamic diameter 

below 2.5 μm are called PM2.5 or fine particles. The category of ultrafine 

particles (UFP) includes particles with diameters of less than 100 nanometers 

(nm). The concentrations of the first two classes of PM are expressed in mass 

per volume because they make up the majority of all PM mass. Measurement of 

PM10 thereby also includes the whole group of PM2.5 and UFP, but PM2.5 and 

UFP only make up a small portion of the total PM10 mass. PM2.5 can be 

quantified by filtering out particles over 2.5 μm in diameter. Again, UFPs are 

contained in this measure but only make up for a very small amount of the total 

mass of PM2.5. Instead, UFP concentrations are usually expressed in number of 
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particles per volume because UFP make up the majority of all PM in terms of 

particle numbers. Particle number concentrations for the accumulation mode 

(PNAM), which reflects particles with diameters between approximately 0.1 and 

1.0 μm, are considered a measure of quasi-ultrafine particles (qUFP).  

When considering the source of origin, a distinction can be made between 

anthropogenic and biogenic PM (European Environment Agency, 2013). 

Anthropogenic PM arises from human activity, e.g. from road traffic, heavy 

industry, energy production, agriculture, heating, and, mainly in poorer 

developing countries, from open fires when cooking in closed rooms. Natural 

phenomena, such as volcanic eruptions, sand storms, forest fires, and sea 

spray produce PM of biogenic origin. The precise chemical composition of PM 

depends on its source of origin and can contain anything from shells, pollen, 

fungal spores or grain granules up to car tire wear, soot, organic carbon 

particles, nitrates and sulfates from secondary particle formation, or fibrous 

materials such as asbestos or cotton fibers. (European Environment Agency, 

2013) 

In addition to PM, various gases are also considered AP. Nitrogen oxides (NOX) 

is a collective term for all nitrogen oxide compounds, primarily nitrogen 

monoxide (NO) and nitrogen dioxide (NO2) (European Environment Agency, 

2013; WHO Regional Office for Europe, 2013). NO makes up the majority of 

NOx emission and contributes to the formation of ozone and PM. The main 

sources of anthropogenic NOx emissions are combustion engines and 

combustion plants for coal, oil, gas, wood and waste. In densely populated 

metropolitan areas, road traffic is one of the most important sources of NOx, 

accounting for up to 60% of overall NO2 emission (European Environment 

Agency, 2013; WHO Regional Office for Europe, 2013). 

 
1.1.2 Noise 
In urban settings, several different sources are responsible for the total noise 

exposure, including transport (e.g., road, railway, and aircraft traffic) as well as 

industry or construction work. Additionally, exposure levels can vary over 

different periods of the day. For example, daytime and nighttime noise can differ 
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drastically depending on traffic volume, nocturnal flight bans and different 

working hours in factories or at construction sites.  

  
1.1.3 Traffic-Related Exposures 
An important urban source of AP is traffic, which also is a major source of 

ambient noise. Because they share a common source, AP and traffic noise 

often occur simultaneously and it is an important task to differentiate between 

these two exposures when looking at possible independent effects as well as 

effect modification. Moreover, PM measures do not differentiate by source. 

Considering the distance people live from the nearest highly trafficked road may 

add more information about traffic-related AP exposure. Often associated with 

traffic diesel exhaust in highly urbanized areas, black carbon (BC) or soot may 

also be of interest. BC is a fraction of PM2.5 and is created in fossil fuel burning 

and combustion engines. The dominating light-absorbing substance elemental 

carbon (EC) can be quantified as a surrogate measure for BC by measuring the 

blackness of PM2.5 filters. This is oftentimes referred to as PM2.5 absorbance 

(PM2.5 abs, WHO Regional Office for Europe, 2013). 

 

1.2 Neuropsychology, Resting State Networks and 

Brain Structure 
1.2.1 Neuropsychological Testing 
Neuropsychological tests are conducted in an effort to quantify the functional 

intellectual capabilities of individual participants in different cognitive areas and 

allow comparisons between different participants to be made. Analogous to 

Jockwitz et al., 2017, these tests can be grouped into the five different 

neuropsychological domains of Attention, Executive Function, Memory, 

Working/Short-Term Memory, and Language. 

  
1.2.2 Resting State Networks 
The brain consists of a number of Resting State Networks. This term  depicts a 

set of functionally connected brain areas that show simultaneous and 

spontaneous activation (i.e. fluctuations) when the brain is at rest (Smith et al., 
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2009). This state of rest does not refer to a particular state of the brain itself. 

Instead it denotes any continuous situation in which the participant is not 

exposed to external stimuli or undergoing a task or activity; it is noteworthy that 

the state of the eyes is not clearly defined either, so that they may be opened or 

closed and the view fixed or not (Snyder and Raichle, 2012). 

These networks’ activity is quantified by means of functional magnetic 

resonance imaging (fMRI), a method of magnetic resonance imaging (MRI) that 

measures cerebral blood flow and differences in cerebral blood flow as blood-

oxygen-level-dependent (BOLD) imaging (Ogawa et al., 1990). Because 

cerebral blood flow to and brain activity of the same brain region have shown to 

be linked, differences in blood flow during task activation and rest corresponds 

to changes in regional brain activity attributable to the execution of the task and 

can be used for functional brain imaging (Villringer and Dirnagl, 1995).  

One of these networks is the bihemispheric fronto-parietal network (FPN). It 

includes the dorsolateral prefrontal cortex (DLPFC), posterior cingulate cortex 

and precuneus (PCC/P), and the inferior parietal lobule (IPL) and has been 

shown to be active during tasks related to working memory and language 

function (Smith et al., 2009).  

Resting State Networks undergo changes during normal aging and show a high 

inter-individual variability particularly in older aged participants (Marstaller et al., 

2015). This emphasizes the relevance of considering these networks when 

investigating aging and age related changes in brain morphology and especially 

brain activity.  

 
1.2.3 Local Gyrification Index (lGI) 
As one of the important structural features of the human brain, gyrification refers 

to the convolution of the cerebral cortex, i.e., the formation in gyri and sulci. 

Gyrification increases the brains surface and enables it to have more neurons in 

less space, which leads to higher processing capability and is generally 

associated with better cognitive performance. The gyrification index (GI) serves 

as a measure for the degree of gyrification. It is calculated as the ratio of the 
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total pial surface (including sulci) to the outer pial surface (excluding sulci). 

Thus, the higher the GI, the stronger the cortical convolution. 

When first developed, GI was determined using postmortem brain sections. It 

was calculated by drawing contour lines corresponding to the sulci and the 

outer pial surface in the frontal plane, measuring the two lines and taking the 

ratio. This was a two-dimensional approach for the determination of gyrification 

as implemented by Zilles et al. in 1988, and was originally done manually.  

Extending this approach to the third dimension and improving the measuring 

accuracy as well as reducing the time spent on the analysis, the local 

Gyrification Index (lGI) within the Freesurfer software (http://freesurfer.net/) can 

be used today. This method creates a three-dimensional MRI reconstruction of 

the brain of a living participant with thousands of vertices. In a particular Region 

of Interest (ROI), the two surfaces, i.e., the total pial surface and the outer pial 

surface, are locally calculated and then the ratio is taken. Therefore, it is 

possible to determine individual lGI values for different ROIs. This method also 

allows for calculation of the entire brain's gyrification by generating thousands of 

ROIs all over the brain’s surface (Schaer et al., 2008) as a useful and sensitive 

marker for brain atrophy (e.g. Hogstrom et al., 2013). By comparing different 

ROIs, it is possible to identify regional differences in lGI and thus in regional 

cortical atrophy.  

 

1.3 State of Research 
1.3.1 Effect of Long-Term Air Pollution and Noise on General Health 
In previous studies, long-term AP and noise exposure have been shown to have 

a negative impact on several different aspects of human health (Kempen et al., 

2018; Kim and van den Berg, 2010; Thurston et al., 2017; WHO Regional Office 

for Europe, 2013). (Nußbaum et al., 2019)  

At present, research has focused primarily on the effects of AP on pulmonary 

disease, cardiovascular diseases, stroke and systemic inflammation. From prior 

studies, it is known that long-term exposure to PM significantly increases the 
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risk of lung cancer (Raaschou-Nielsen et al., 2013), having a stroke (Lee et al., 

2018; Scheers et al., 2015) or coronary events (Cesaroni et al., 2014).  

Long-term studies have shown associations between long-term exposure to 

NO2 and mortality (total as well as cardiovascular-, respiratory- and lung 

cancer-specific) (Cesaroni et al., 2014; Hoek et al., 2013), the frequency of lung 

cancer (Hamra et al., 2015) and the development of chronic respiratory 

symptoms (e.g., development of asthma) (Anderson et al., 2013). Additionally, 

exposure to NO2 has been linked to impaired lung function (Adam et al., 2014) 

and type 2 diabetes (Wang et al., 2014).  

Several meta-analyses have shown that long-term road traffic noise exposure is 

significantly associated with hypertension (van Kempen and Babisch, 2012), 

type 2 diabetes (Dzhambov, 2015), cardiovascular disease (Babisch, 2014), 

and ischemic heart attack (Kempen et al., 2018). 

 
1.3.2 Effect of Air Pollution and Noise on Neuropsychological 

Function 
Only lately the influence of AP and noise exposure on the brain and on 

neuropsychological function has gotten into the focus of research. Previous 

studies have shown associations between exposure to AP and higher incidence 

of Alzheimer's disease (Jung et al., 2015), depressive symptoms (Lim et al., 

2012), and suicide (Bakian et al., 2015). (Nußbaum et al., 2019) 

It has also been shown that AP exposure might have an effect on cognitive 

performance (Tzivian et al., 2016; Xu et al., 2016). Higher levels of PM 

exposure were associated with a decline in performance for a number of 

neuropsychological tests, including tasks on working memory with words and 

numbers, medium-term memory, verbal fluency, spatial and logical thinking, and 

pattern recognition (Ailshire and Clarke, 2015; Power et al., 2011; Tonne et al., 

2014; Tzivian et al., 2016; Weuve et al., 2012). With a doubling in PM 

concentration (i.e., an increase of 10 micrograms (μg) per m3), the observed 

decline in test performance was similar to effects seen in a normally aging brain 

within a course of approximately two years (Power et al., 2011; Weuve et al., 

2012). These results raise the question whether the performance loss in specific 
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neurocognitive functions is also reflected in structural changes in task-specific 

brain regions. (Nußbaum et al., 2019) 

Effects of long-term ambient noise on cognitive function of adults, so far, have 

seldom been researched (Nußbaum et al., 2019). Tzivian et al., 2016 found a 

negative association between long-term noise exposure and neuro-

psychological test results regarding memory and executive function. Other 

studies on traffic noise have looked into short-term effects only and found 

impaired recall of text, semantic memory, and attention (Hygge et al., 2003) as 

well as impaired sleep quality (Schapkin et al., 2006).  

Furthermore, all of the studies mentioned above, except for Tzivian et al. 2016, 

looked at either AP or traffic noise. In order to fully understand the effects AP 

and noise have on neuropsychological function, it is crucial to look at both 

exposures simultaneously, because they share traffic as their common source 

in the urban setting.  

 
1.3.3 Effect of Air Pollution and Noise on Brain Structure 
In order to explain the decreases in cognitive function that have been seen with 

increased exposure to AP, several studies have been conducted looking at the 

association between AP and brain structure. A long-term study observed that 

higher PM2.5 exposure was associated with lower total cerebral brain volume 

and higher odds of covert brain infarctions (Wilker et al., 2015). Because brain 

volume can be generally used as marker for age-associated cerebral atrophy, 

the authors concluded that AP may have serious effects on the structural aging 

of the brain. In a population of older women, researchers found that PM2.5 

exposure was associated with decreased white matter volume (WMV) in frontal 

and temporal regions (Chen et al., 2015). Additionally, it has been shown that 

PM2.5 exposure was associated with reductions in subcortical WMV in the 

frontal lobe, with smaller clusters in the temporal, parietal, and occipital lobes, 

and reduced cortical grey matter volume (GMV) in the bilateral superior, middle, 

and medial frontal gyri (Casanova et al., 2016). One study showed that higher 

PM2.5 and PM10 exposure was associated with smaller deep GMV (Power et al., 

2018). (Nußbaum et al., 2019) 



8 
 

No studies on the effects of long-term noise exposure on the structure of the 

brain have been conducted so far. (Nußbaum et al., 2019) 

1.3.4 How Might Air Pollution and Noise Affect The Brain? 
Before investigating possible associations of AP and noise on brain structure it 

makes sense to look at possible pathways of how AP and noise might affect the 

brain. For PM, particle size plays an important role in the possible ways AP 

affects the body as well as the brain’s structure and function. In general, the 

smaller the particles are, the deeper they can penetrate into the lung and the 

effective surface area which the particles get in contact with is higher (WHO 

Regional Office for Europe, 2013). PM10 exerts its effect primarily on mucous 

membranes in the nose and throat or in the lungs and acts systemically via 

mediators or contaminants, but it cannot pass though the alveolar membrane. 

PM2.5, on the other hand, can enter the alveoli through the lung and cross the 

alveolar membrane to get into the circulatory system (WHO Regional Office for 

Europe, 2013). In addition to these pathways, UFP have been shown in animal 

experiments to be able to pass from the nasal mucosa into the olfactory bulb via 

neural translocation (Elder et al., 2006; Oberdörster et al., 2004). NO2 has a low 

water solubility and thus the pollutant is not bound in the upper airways but 

penetrates into lower parts of the respiratory tract (bronchioles, alveoli) (WHO 

Regional Office for Europe, 2013).  When in contact with alveolar tissue, the 

highly oxidative agent can lead to oxidative stress, cell damage, cause 

inflammatory processes and lead to hyperreactivity of the bronchi (WHO 

Regional Office for Europe, 2013). (Nußbaum et al., 2019)  

On the one hand, AP exposure could lead to atherosclerotic changes in the 

arteries supplying the brain (Provost et al., 2015). This would result in an 

increased vascular resistance and reduced cerebral blood flow (Wellenius et al., 

2013), which would then favor a loss of function and a decrease in the volume 

of certain parts of the brain. This would also affect local and overall brain 

atrophy. 

On the other hand, AP exposure could lead to different inflammatory processes 

in the brain tissue. Mice exposed to acute diesel exhaust gases showed 

increased activation of microglia, increased lipid peroxidase, neuro-
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inflammation in different brain regions, especially in the hippocampus and 

olfactory bulb, and an impairment of adult neurogenesis (Costa et al., 2015). In 

addition, rats exposed to similar exhaust gases exhibited a dose-dependent 

increase in cortical neuronal loss, selective neuronal loss with preserved tissue 

structure and extracellular matrix, nuclear pyknosis, kariolysis, kariorrhexis, 

small to moderately large regions with penumbra, and population growth of 

activated microglia and astrocytes (Ejaz et al., 2014). This indicates that 

inflammation or oxidative stress to glia or neurons through contact with PM 

could lead to a loss of function and inflammation-induced alteration and 

breakdown of brain tissue. The latter could then be measured again as a 

change in the lGI. At present, it is not clear whether the inflammation 

necessarily has to occur directly in the brain or whether an inflammation of the 

olfactory nerve or the lung by nasal or bronchiolar/alveolar contact with PM, 

respectively, could also be transmitted to the brain via the olfactory nerve or 

systemic inflammation.   

It is also conceivable that inflammation of the blood-brain barrier caused by 

PM2.5 or UFP circulating in the bloodstream may lead to increased permeability 

of the barrier. In mice, an increased activity of matrix metalloproteinases, a loss 

of tight junctions at the blood-brain barrier, an increase in tight junction 

permeability, and an increase in neuroinflammatory markers were observed 

when exposed to diesel exhaust gases (Oppenheim et al., 2013). An in vitro 

study (Liu et al., 2015) with human endothelial cells and macrophages has 

shown that PM2.5 affects tight junctions of endothelial cells, increases monocyte 

trans-migration, and thus possibly also increases the permeability of the blood-

brain barrier. At present, it is not fully understood to what extent this increased 

permeability may allow other pollutants to reach the brain more easily. 

Furthermore, Liu et al. (2015) found that glutamate is probably a mediator of the 

neurotoxic effect of PM2.5. Significantly reduced glutaminase could be detected 

in PM2.5-treated macrophages, but this effect was even stronger in extracellular 

vesicles. In an in-vitro study using astrocytes, the release of glutamate and 

adenosine triphosphate (ATP) via the activation of connexin and pannexin 

hemichannels was demonstrated when exposed to BC (Wei et al., 2014). An in-

vitro study with rats also showed that ultrafine particle exposure reduced the 
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synapse function of CA1 neurons (Davis et al., 2013). This was due to a 

nitrosylation respectively dephosphorylation of various N-Methyl-D-Aspartate 

(NMDA) receptors and further supports the hypothesis that glutamate may be a 

mediator of the neurotoxic effect of AP.  

It is also possible that AP exposure may lead to hormonal changes in the whole 

organism or altered gene expression in brain cells, which influence the structure 

and function of the brain. A study conducted in rats observed that exposure to 

PM resulted in decreased tumor necrosis factor – alpha (TNF-α) messenger 

ribonucleic acid (mRNA) levels in the cerebral hemisphere and pituitary gland 

(Thomson et al., 2007). However, an in-vitro study by Campbell et al., (2014) 

using human neurons and glia observed an increase of TNF-α in the neurons in 

both the absence and presence of glia as well as a decrease in reactive oxygen 

species. These results suggest that human cells may behave differently from 

animal cells in the presence of PM, at least as far as oxidative stress is 

concerned; so additional studies in human cells are needed.  

As for noise, little work has been done investigating the possible pathways by 

which it may affect the brain. It has been shown that noise exposure leads to 

changes in the electroencephalography (EEG) and in autonomic variables that 

are called arousals or phasic activations (Kim and van den Berg, 2010). 

Whether this could lead to changes in brain plasticity and structural changes in 

brain morphology has not been investigated. 

 

1.4 Aims of this Dissertation  
In summary, evidence from experimental as well as epidemiological studies 

supports the hypothesis that AP and noise exposure are adversely associated 

with general health, cognitive performance and possibly the development of 

diseases of the brain. Moreover, AP exposure is correlated with a lower total 

brain volume, with a decrease in cortical and subcortical WMV in association 

regions, and a reduction of cortical and subcortical GMV. Beyond these solely 

volumetric findings, there is a lack of further structural correlates in the brain 

which are associated with AP exposure. Studies on AP and cognitive 

performance indicate that AP may cause damage to specific brain structures 
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and functions. For a comprehensive understanding of processes that occur in 

the brain under AP exposure, it is important to understand which structural brain 

changes accompany cognitive performance losses. It is likely that different parts 

of the brain exhibit varying susceptibility to AP-induced changes, but these 

susceptible regions have not been clearly identified in prior studies. To what 

extent AP exposure affects the brain’s physiological aging process, is not yet 

completely understood. Thus, it is of interest whether differences in AP and 

noise exposure are associated with regional differences in the structure of the 

brain. (Nußbaum et al. 2019)  

The aim of this thesis was to first investigate associations of long-term AP and 

noise exposure and cognitive performance of 615 adult men and women aged 

55-85 years from the 1000BRAINS Study. In a second step, resting state 

networks corresponding to the cognitive performance losses were identified and 

the degree of local cortical atrophy in these task-specific regions was 

determined using lGI analyses. Finally, possible associations between AP and 

noise exposure and local cortical atrophy were explored. So far, there have 

been studies on AP and volumetric analyses of the brain, but to my knowledge, 

this is the first study looking at AP and lGI as another important surface-based 

and thus sensitive structural feature of the brain. Moreover, this is the first study 

to look at noise exposure in the broader context of brain structure and thus the 

study is also the first study to look at AP and noise exposure together in this 

context. (Nußbaum et al. 2019) 

Additional effect modification and sensitivity analyses were done to explore 

ways of further research in the direction of possible mediating and modulating 

effects demographic and lifestyle characteristics have on the associations 

between AP and noise and brain structure. 

 

2 Materials and Methods 
2.1 Study Population 
Data from the successive population-based Heinz Nixdorf Recall (HNR) and 

1000BRAINS Studies has been used to carry out the study underlying this 
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dissertation. The objective of the HNR Study was to investigate risk factors for 

atherosclerosis, cardiovascular disease, cardiac infarction and death 

(Schmermund et al., 2002). The objective of the 1000BRAINS Study was the 

evaluation of the variability of brain structure and function in the course of 

normal aging (Caspers et al., 2014). The participants from these cohort studies 

resided in three neighboring cities (Bochum, Essen and Mülheim/Ruhr), which 

all lie in the urban and industrialized German Ruhr Area (Schmermund et al., 

2002). The study area measures about 600 km2. (Nußbaum et al., 2019) 

The random selection process for initial participant acquisition into the HNR 

Study took place between December 2000 and August 2003 (n=4,814; age 

range: 45-75 at baseline). After five years (2006-2008) participants were invited 

to take part in the first follow-up examination (n=4,157). After ten years (2011-

2015) a second follow up took place (n=3,089) and participants were asked to 

additionally participate in the 1000BRAINS Study. Participants without medical 

contraindications, who were physically able for MRI, also undertook a variety of 

neuropsychological and motor tests as well as laboratory, genetic and 

epigenetic analyses (Caspers et al., 2014). Overall, MRI data on 666 

participants could be used for the present study. (Nußbaum et al., 2019)  

The HNR Study was approved by the ethics committee of the medical faculty of 

the University of Essen (Ethics votum number: 99-69-1200, date of approval: 

12.05.1999). 1000BRAINS was approved by the ethics committee of the 

medical faculty of the University of Duisburg-Essen (Ethics votum number: 11-

4678, date of approval: 05.03.2012). All participants gave their written informed 

consent. All study procedures complied with the declaration of Helsinki. 

(Nußbaum et al., 2019)  

 

2.2 Exposure Assessment  
2.2.1 Air Pollution 
Exposure data on AP was calculated with two different models. On the one 

hand, the land use regression model (LUR) according to the European Study of 

Cohorts for AP Effects (ESCAPE) standardized procedure (ESCAPE-LUR) was 

used to assess PM of varying aerodynamic diameters (≤ 10 μm [PM10] and ≤ 
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2.5 μm [PM2.5]) and [PM2.5 abs], a proxy for BC, and nitrogen oxide 

concentrations (NOx and NO2) (for more information see: Beelen et al., 2013 

and Eeftens et al., 2012). PM was measured at 20 sites and nitrogen oxide 

concentrations at 40 sites between October 2008 and October 2009, both in 

three separate two-week periods to account for different seasons (Beelen et al., 

2013). The LUR model was created with the one-year averages of the 

measured pollutant concentrations from background and traffic-specific 

monitoring sites and with predictor variables from Europe-wide and local 

Geographic Information System databases. With the input of each participant’s 

residential address at the first follow-up examination in 2006-2008 the model 

estimated the 1-year-mean exposure concentration for each participant in the 

year before the first follow-up examination. (Nußbaum et al., 2019) 

On the other hand, the validated, spatio-temporal, three-dimensional EURopean 

Air Pollution Dispersion (EURAD) chemistry transport model (Büns et al., 2012; 

Hass et al., 1993; Memmesheimer et al., 2004) was used to assess the 

accumulation mode particle number concentration (PNAM; between 0.1 and 1.0 

μm in aerodynamic diameter, Nonnemacher et al., 2014) for each participant. 

The multilayer, multigrid EURAD model projects the transport, chemical 

transformation, and deposition of tropospheric components (Büns et al., 2012). 

With the input of topographic information from the U.S. Geological Survey 

database (resolution of approximately 500 m), land use data from the German 

Tropospheric Research Programme, and both European and local official 

emission inventories (Memmesheimer et al., 2004) the model estimated the 

one-year average PNAM concentrations from the 1 km2 grid cell for each 

respective residence of the participants for 2006, 2007, and 2008 (Hennig et al., 

2016; Nonnemacher et al., 2014). (Nußbaum et al., 2019)  

Validation of PNAM estimates was done with measurements taken between 

January 2011 and December 2014 by the Institute of Energy and Environmental 

Technology (IUTA) at its measuring station in  Mülheim-Styrum using a TSI 

3926 scanning mobility particle sizer spectrometer (size range: 0.014-0.750 μm; 

TSI Incorporation, Shoreview, Minnesota, U.S.A.; for more details, see Birmili et 

al., 2016).  
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2.2.2 Noise Exposure 
Long-term noise exposure assessment was done in agreement with the 

European Directive 2002/49/EC (EUR-Lex - 32002L0049 - EN - EUR-Lex, 

2002) as weighted 24-hour (LDEN) and nighttime (10pm – 6am; Lnight) mean 

noise at facade points. At a height of 4 ± 0.2 m in a 10-m buffer around the 

residential address, participants were given the maximum noise levels 

measured. (Nußbaum et al., 2019) 

 
2.2.3 Traffic Indicators 
Defined as a street in the upper quintile of traffic density (>26,000 vehicles per 

day) the distance (m) to the nearest heavily trafficked road (Distmajroad) was used 

to account for traffic-specific exposure. The necessary data was acquired from 

the State Office for Nature, Environment and Consumer Protection of North-

Rhine-Westphalia (LANUV). (Nußbaum et al., 2019) 

 

2.3 Outcome Data 
2.3.1 Neuropsychological Assessment 
The neuropsychological tests implemented by the 1000BRAINS Study (Caspers 

et al., 2014) enable the assessment of a variety of cognitive functions. They can 

be grouped into the five cognitive domains of Attention (Gatterer et al., 1989; 

Morris et al., 1989), Executive Function (Bäumler, 1985; Morris et al., 1989; 

Regard et al., 1982; Stroop, 1935; Sturm et al., 1993), Memory (Benton et al., 

2009; Lux et al., 2012), Short-Term/Working Memory (Della Sala et al., 1997; 

Oswald and Fleischmann, 1997; Schellig, 1997), and Language 

(Aschenbrenner et al., 2000; Schmidt and Metzler, 1992), as earlier described 

by Jockwitz et al (2017). Table 1 gives an in depth explanation for each test 

procedure and the assignment into the five domain categories. (Nußbaum et al., 

2019) 
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Table 1. Description of all 19 neuropsychological tests within the five cognitive domains, from 
Nußbaum et al. 2019 

Cognitive 
function Domains and Tests Description 

 Attention  

Selective 
attention 

Alter-Konzentrations-test  
(Gatterer et al., 1989) 

Time(s) to recognize target figures 
among distractors 

Processing 
speed 

Trail Making test (part A)  

(taken from CERAD-Plus;  
Morris et al., 1989)  

Time(s) to connect randomly arranged 
digits in ascending order 

 Executive Function  

Problem 
solving 

Subtest 3 from “Leistungs- 
prüfungssystem 50+”  

(Sturm et al., 1993) 

Number of correctly identified non-
matching figures among geometrical 
figures 

Figural 
fluency 

Fünf-Punkte-test      
(Regard et al., 1982)         

Number of different drawn patterns by 
connecting 5 points in 3 minutes 

Concept 
shifting 

Trail Making test (B-A)  
(taken from CERAD-Plus;       
Morris et al.,    1989)  

Time(s) to alternately connect letters 
and numbers in ascending order (TMT 
B), then calculating:  
TMT B − TMT A 

Susceptibility 
to 
interference 

Farbe-Wort-Interferenztest     
(Jülich version; similar to:  
Stroop, 1935; Bäumler, 
1985) 

Time(s) to name ink color of words with 
color meaning  
but printed in a different color 
(subtracted by the time(s) to read color 
words) 

 Memory  
Figural 
memory 

Benton-test 
(Benton et al., 2009) 

Number of errors during free recall of 
20 remembered figures 

Verbal 
learning 

Verbaler Gedächtnistest  
(Lux, S., et al., 2012) 

After learning 15 words in 5 query  
rounds, number of cumulated free 
recall and number of delayed recall 
after 20-30 minutes 

 Short Term /  
Working Memory  

Visual  
Visual Pattern test      
(Jülich version; similar to:    
Della Sala et al., 1997) 

Number of memorized patterns 
presented in a grid of black and white 
squares 

Visual spatial  Block-tapping-test  
(Schellig, 1997)  

Number of correctly tap-repeat tapped 
blocks, forwards and backwards 

Verbal  

Zahlennachsprechen  

(from Nürnberger Alters-   
Inventar; (Oswald and    
Fleischmann., 1997) 

Number of correctly repeated digits 
previously given,  
forwards and backwards 

 Language  
Semantic / 
phonemic 
verbal 
fluency 

Regensburger  
Wortflüssigkeitstest     
(Aschenbrenner et al., 2000) 

Number of produced words by category: 
words beginning with B, alternately 
beginning with G and R, occupations, 
and alternately sports and fruits 

Vocabulary Wortschatztest  
(Schmidt and Metzler, 1992) 

Number of correctly identified real 
words among 5 pseudo-words 
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These tests enable identification of cognitive functions that are differentially 

affected by aging and assessment of the respective consequences on brain 

imaging parameters. The resulting neuropsychological profiles allow 

comparison of intra- and inter-individual strengths and weaknesses. Testing 

time per participant was approximately 75–105 min, depending on the individual 

participant’s performance. Most neuropsychological tests were designed 

specifically for the testing of older participants, i.e., 55 years and above. 

One to three missing test results per participant were replaced by the age- and 

sex-stratified median scores. Participants who had more than three missing 

values were not included in the analysis. Skewed distributions of test results 

required rank-transformation, mean-centering and scaling of the values for 

further analysis. With these standard scores, tests were sorted into the five 

cognitive domain categories and cognitive domain scores were calculated as 

means of all standard scores for each domain. (Nußbaum et al., 2019) 

Early signs of dementia were identified using DemTect (Kalbe et al., 2004). This 

screening instrument evaluates verbal and working memory, word fluency 

performance, and intellectual flexibility, and has a high sensitivity for the 

detection of mild cognitive impairment and early dementia.  

 
2.3.2 Magnetic Resonance Image (MRI) Acquisition 
MR Imaging was carried out on a 3T Siemens Tim-TRIO MRI scanner with a 

32-channel head coil. For brain function, echo planar imaging (EPI) generated 

300 images for each participant at rest and enabled identification of the FPN, 

with the following parameters of the scans: 36 slices, slice thickness 3.1 mm, 

TR = 2200 ms, TE = 30 ms, FoV = 200 x 200 mm2, voxel resolution 3.1 x  3.1 x 

3.1 mm3. For brain structure, 3D high-resolution T1-weighted magnetization-

prepared rapid acquisition gradient-echo (MPRAGE) anatomical scans enabled 

surface reconstruction (Caspers et al., 2014), with the following parameters of 

the scans: 176 slices, slice thickness= 1mm, repetition time (TR) = 2250 ms, 

echo time (TE) 3.03 ms, field of view (FoV) = 256 x 256 mm2, flip angle = 9°, 

and voxel resolution of 1 x 1 x 1 mm3. (Nußbaum et al., 2019) 
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2.3.3 Image Processing 
2.3.3.1 Definition of the FPN Seed Regions in Resting-State fMRI Data   

How resting state networks can be identified with fMRI data can be read in 

depth in Jockwitz et al. (2017). As for preprocessing, the Functional Magnetic 

Resonance Imaging of the Brain (FMRIB) Software Library (FSL) software [FSL 

- FslWiki; Jenkinson et al., 2012] was used for motion correction (MCFLIRT; 

Jenkinson et al., 2002), brain extraction (BET; Smith, 2002), high pass temporal 

filtering (100 ms), linear and nonlinear registration (FLIRT and FNIRT; 

Jenkinson et al., 2002; Jenkinson and Smith, 2001) to the standard space 

template (MNI 152), smoothing using a 5-mm FWHM Gaussian kernel, 

denoisation of the EPI scans using FMRIB’s ICA-based Xnoiseifier (FIX), and, 

finally, correction for motion artifacts (Griffanti et al., 2014; Salimi-Khorshidi et 

al., 2014). (Nußbaum et al., 2019) 

At this stage fMRI scans were suitable for the actual process of identifying the 

FPN. MELODIC multi-session temporal concatenation (Beckmann et al., 2005) 

enabled the detection of mutual spatial patterns among participant’s resting 

state scans using probabilistic independent component analysis decomposition 

of the resting state signals (Beckmann and Smith, 2004). Visual inspection lead 

to the identification of the best spatial fit to the FPN as stated by (Beckmann 

and Smith, 2004; Smith et al., 2009). (Nußbaum et al., 2019) 

 
2.3.3.2 Surface Reconstruction and local Gyrification Index  

Anatomical scans were preprocessed with Statistical Parametric Modeling 

(SPM8) and FreeSurfer 5.3.0 [http://freesurfer.net/; Dale et al., 1999; Fischl et 

al., 1999]. Preprocessing included SPM8 segmentation to construct a reliable 

brain mask, skull-stripping and going through the cortical reconstruction process 

as implemented in FreeSurfer 5.3.0 (Dale et al., 1999; Fischl et al., 1999). The 

single steps consisted of (1) motion correction, (2) intensity normalization, (3) 

transformation into Talairach space, (4) tessellation of the gray/white matter 

boundary, (5) correction of topological defects, and (6) expansion of the 

gray/white matter interface to create the pial surface. (Nußbaum et al., 2019) 
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At this stage structural MRI scans were suitable for the actual process of lGI 

value calculation as implemented in FreeSurfer (Schaer et al., 2012, 2008). lGI 

is defined as the ratio of the total pial surface area (including the contour of 

each sulcus) to the exterior hull surface area (excluding sulci) in a specific brain 

region and can be used to assess the amount of cortical folding within the 

regions of the FPN. 

Closely warping the pial surface, i.e. a morphological closing operation with a 

15mm sphere closing each sulcus, was used to create the exterior hull surface. 

LGI values were generated for every vertex of the pial surface (Schaer et al., 

2008) as the ratio of the pial surface area (defined as a sphere with the vertex 

as center and a default 25 mm radius) to the exterior hull surface. This means 

that higher lGI values indicate a stronger folding of the cortex and decreases in 

lGI hint at local brain atrophy. lGI was calculated for every region of the FPN 

(left and right: DLPFC, PCC/P, and IPL) as shown in Figure 1. (Nußbaum et al., 

2019) 
 

 

 
 

Figure 1. Regions of interest in 
the fronto-parietal network.   
I left hemisphere from lateral: left 
dorsolateral prefrontal cortex 
(DLPFC) and left inferior parietal 
lobule (IPL).  
II left hemisphere from medial: 
left posterior cingulate cortex and 
precuneus (PCC/P) and left 
dorsomedial prefrontal cortex.  
III right hemisphere from lateral: 
right dorsolateral prefrontal cortex 
(DLPFC) and right inferior parietal 
lobule (IPL).  
IV right hemisphere from medial: 
right posterior cingulate cortex 
and precuneus (PCC/P) and 
parts of the right dorsomedial 
cortex.  
From Nußbaum et al., 2019 

 

 
Surface reconstructions were randomly controlled for the participants. No 

systematic bias in the current data has been found that would, in turn, bias the 

results on the lGI measure. Further, all transformations of the FPN onto the 

individual participants were controlled. Participants for whom the 

transformations were not satisfactory were excluded from further analysis (n=3).  
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2.4 Covariates  
Within the HNR (Schmermund et al., 2002) and 1000BRAINS (Caspers et al., 

2014) Studies, each participant underwent standardized interviews and 

questionnaires to obtain information on demographic characteristics and 

lifestyle variables. Demographic characteristics included age in years as 

continuous variable, sex as dichotomous variable (male and female), and 

Socioeconomic status (SES) as education level according to the International 

Standard Classification of Education (ISCED) as total years of formal education, 

combining school and vocational training (UNESCO (1997)) in four categories: 

low (≤10 years), medium low (11-13 years), medium high (14-17 years) and 

high (≥18 years). Additionally, neighborhood unemployment rate, an indicator 

for neighborhood SES, was obtained from local census authorities for each 

participant’s neighborhood conferring to administrative bounds (median 

population size of 11,263; collection near baseline; Dragano et al., 2009). 

Lifestyle variables consisted of alcohol consumption (five categories: 0, 1-3, 4-6, 

7-14, and ≥ 14 drinks per week), smoking status (never, former, current), 

regular exposure to environmental tobacco smoke (ETS; yes/no), cumulative 

pack-years at baseline (five categories; first group: never-smokers; the rest 

divided by quartiles), and physical activity  (four categories: 0, ≤50, ≤100, and 

>100 kcal expenditure per week by exercise). Additional covariates for the 

sensitivity analyses were body mass index (BMI; weight in kilograms divided by 

squared height in meters [kg/m2]) and coronary heart disease (CHD; self-

reported history of myocardial infarction or coronary intervention at baseline or 

documented incidence of CHD during follow-up). Type 2 diabetes mellitus 

(fasting blood glucose >125 mg/dl, blood glucose ≥200 mg/dl or reported use of 

insulin or oral antihyperglycemic medication in the last 7 days before 

examination) was likewise included. Depressive symptoms were evaluated with 

the German version of the Center for Epidemiologic Studies Depression scale 

(CES-D) short form (Hautzinger, M and Bailer, M, 1993). (Nußbaum et al., 

2019) 
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2.5 Statistical Analysis 
2.5.1 In- and Exclusion Criteria 
From 3089 participants at the second 

follow-up examination, 666 finished 

the first follow-up examination (FU1) 

and had MRI scans done; with 630 

participants also having complete data 

on AP and noise exposure as well as 

all covariates at FU1. Only participants 

with complete or nearly complete 

neuropsychological testing data were 

included (≤3 missing values; n=615). 

(Nußbaum et al., 2019) 

Of the 615 participants, 39 had 1 

missing value, 13 participants had 2 

missing values, and 4 participants had 

3 missing values. Additionally, 25 

participants were excluded for the lGI 

analysis if they had defective structural 

MRI imaging data or imaging data that 

got corrupted during computational 

processing. This left a total of N=615 

participants with complete data on 

exposure as well as covariates and 

neuropsychological test results 

(neuropsychological tests group) and 

N=590 participants with additionally 

usable structural MRI imaging (lGI 

group; see Figure 2). (Nußbaum et al., 

2019) 

 

Figure 2. Flowchart on study population 
selection process. Abbreviations: HNR, Heinz 
Nixdorf RECALL study; FU1, first Follow-Up in 
2006-2008; MRI, magnetic resonance 
imaging. From Nußbaum et al., 2019 
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2.5.2 Linear Regression Models 
A variety of linear regression models were ran with every AP and noise 

exposure and the five cognitive domain scores as well as every 

neuropsychological test separately as outcome variable. The analysis consisted 

of four steps of adjustment of the models. First and second, an unadjusted 

model and a discovery model (adjusted for age, individual SES, and sex) were 

run in an effort to detect any functionally relevant brain regions for a later lGI 

analysis. Third, in an extended model (additional adjustment for alcohol 

consumption, smoking status, ETS, cumulative pack-years, and physical 

activity) possible confounding by lifestyle variables was investigated. The fourth 

adjustment step consisted of additional adjustment for neighborhood 

unemployment rate. All residuals were tested for non-normality and non-

constant variance of the error terms to address model fit. Because of non-

linearity, age was included as mean-centered quadratic and cubic terms. AP 

exposures were included as continuous variables and model parameters were 

estimated per interquartile range (IQR) increase in exposure. PNAM was 

included as the average yearly mean of a three-year span (2006-2008). Noise 

exposures were included with a threshold at 45 dB[A] for Lnight and at 50 dB[A] 

for LDEN and noise values under the set threshold were replaced by the 

threshold value and values over the threshold were included linearly. Model 

parameters in noise models were estimated per 10 dB[A] increase. Distmajroad 

was included as a three categorical variable (<100m, 100m ≤ distance <200m, 

and ≥200m). The covariates from the discovery and the full model were used to 

run the base and main models, respectively, in the analysis on brain structure 

with lGI values of the functionally relevant brain regions as outcome variables. 

Statistical analyses were conducted in R version 3.4.0 (R Development Core 

Team, 2008). (Nußbaum et al., 2019) 

 
2.5.3 Effect Modification 
To assess possible effect modification by age, sex, smoking status, and SES a 

product term between the exposure and each respective covariate was added 

into the main models. Age was dichotomized around the median of 61 years in 

order to get two groups of the same size and enable better comparability. 
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Significant improvement of the model was assessed using likelihood ratio tests 

comparing the product-term model to one without inclusion of a product term 

(α=0.05).  

 
2.5.4 Sensitivity Analyses 
Sensitivity analyses for the main models were performed by adjusting for 

possible intermediate variables: CHD diagnosis, diabetes mellitus, BMI and 

degree of depressive symptoms (continuous variable of CES-D score). This 

was done by including these covariates separately into the models and 

checking whether the estimates were robust to adjustment for each of the 

added variables. In order to minimize potential exposure misclassification, 

additional analyses only among participants who worked less than 15 hours a 

week were conducted, as the residential-based exposure estimates are 

expected to be more accurate in this group. I also created two-exposure models 

to investigate whether pollutants had independent effects. Therefore, PM2.5 was 

included into all other exposure models. 

 

3 Results  
3.1 Description of Variables 
 3.1.1 Study Population 
The population for the neuropsychological analysis consisted of 615 participants 

with 590 of them also being included in the lGI analysis (Figure 2). (Nußbaum et 

al., 2019) 

In general, both study populations were very similar in sociodemographic and 

lifestyle characteristics (Table 2). The mean age of participants was 61.5 ± 6.7 

and 61.3 ± 6.6 years for the neuropsychological and lGI analyses, respectively. 

55.9 (54.7) % of the population were men and about 78 % had 11 – 17 years of 

formal education. 
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Table 2. Demographic and lifestyle characteristics of the participants of the HNR 
study at first follow up examination (2006-2008) included in the neuropsychological 
tests and lGI analyses. From Nußbaum et al., 2019 

Variable 

Neuropsychological 
Tests 

Group (n=615) 

lGI Analysis 
Group (n=590) 

Mean ± SD or n  
(%) 

Mean ± SD or n 
(%) 

Age (years) 61.5 ± 6.7 61.3 ± 6.6 
Sex, female 271 (44.1) 267 (45.3) 
Education Level   
   ≤10 years 29 (4.7) 28 (4.7) 
   11-13 years 316 (51.4) 307 (52.0) 
   14-17 years 161 (26.2) 152 (25.8) 
   ≥18 years 109 (17.7) 103 (17.5) 
Smoking Status   
   Never Smoker 266 (43.3) 257 (43.6) 
   Former Smoker 258 (42.0) 242 (41.0) 
   Current Smoker 91 (14.8) 91 (15.4) 
Cumulative Smoking  
(pack-years)a 22.1 ± 22.3 21.1 ± 18.4 

ETS Exposure, yes 162 (26.3) 157 (26.6) 
Alcoholic Drinks per Week   
   0 163 (26.5) 155 (26.3) 
   1-3 136 (22.1) 132 (22.4) 
   4-6 63 (10.2) 61 (10.3) 
   7-14 137 (22.3) 132 (22.4) 
   >14 116 (18.9) 110 (18.6) 
Weekly Energy Expenditure 
through Physical Activity 
(kilocalories) 

  

   0 (no sports) 205 (33.3) 197 (33.4) 
   >0≤50  169 (27.5) 160 (27.1) 
   >50≤100 153 (24.9) 146 (24.7) 
   >100 88 (14.3) 87 (14.7) 
Neighborhood  
Unemployment (%) 12.0 ± 3.2 12.0 ± 3.2 

BMI (kg/m2) 28.2 ± 4.4 28.2 ± 4.4 
CHD, yes 10 (1.6) 8 (1.4) 
Diabetes Mellitus, yes 90 (14.6) 85 (14.4) 
CES-D Score 7.0 ± 6.0 7.0 ± 5.9 
Abbreviations: ETS, environmental tobacco smoke; BMI, body mass index; CHD, coronary 
heart disease diagnosis; CES-D, Center for Epidemiologic Studies Depression Scale; lGI, local 
Gyrification Index; HNR, Heinz Nixdorf Recall  
a Among current and former smokers only 
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3.1.2 Exposure Variables 
Exposure variables were also very similar between the two groups (Table 3). Mean PM2.5 (PM10) exposure 

concentrations were 18.3 ± 1.0 μg/m3 (27.5 ± 1.8 μg/m3) for the neuropsychological analysis participants. Mean 

weighted 24-hour and nighttime noise exposures were 52.9 ± 8.7 dB[A] and  44.0 ± 8.5 dB[A], respectively.  
Table 3. Summary statistics for residential long-term exposure levels one year before the first follow-up of the HNR Study (2005-2006) from 
the EURAD and ESCAPE-LUR exposure models for both study populations. From Nußbaum et al., 2019 

 Neuropsychological Tests Group 
(n=615) 

lGI Analysis Group 
(n=590) 

Exposure Mean ± SD or 
n (%) Range IQR Mean ± SD or 

n (%) Range IQR 

PM10 (μg/m3)a 27.5 ± 1.8 24.1-34.2 2.0 27.5 ± 1.8 24.1-34.2 2.0 
PM2.5 (μg/m3)a 18.3 ± 1.0 16.1-21.3 1.4 18.2 ± 1.0 16.1-21.3 1.4 
PNAM (n/mL)b 3,203.6 ± 358.2 2,447.1-4,431.6 497.0 3,202.4 ± 357.0 2,447.1-4,431.6 497.8 
NOX (μg/m3)a 49.3 ± 11.3 24.3-107.7 14.2 49.2 ±11.0 24.3-85.9 14.0 
NO2 (μg/m3)a 29.6 ± 4.7 19.8-62.4 5.3 29.5 ± 4.5 19.8-55.3 5.3 
PM2.5abs (10-5/m)a 1.5 ± 0.3 1.0-3.4 0.3 1.5 ± 0.3 1.0-3.4 0.3 
Lnight (dB[A])c 44.0 ± 8.5 25.2-75.3 12.6 43.9 ± 8.4 25.2-68.5 12.6 
LDEN (dB[A])c 52.9 ± 8.7 34.3-83.7 12.6 52.8 ± 8.7 34.3-77.6 12.8 
Distmajroad (m)d       
   Absolute Distance 1,098.4 ± 812.0 15.8-4,599.7 1,054.8 1,100.3 ± 805.2 15.8-4,599.7 1046.5 
   <100 23 (3.7) - - 21 (3.6) - - 
   ≥100<200 28 (4.6) - - 26 (4.4) - - 
   ≥200 564 (91.7) - - 543 (92.0) - - 

Abbreviations: HNR, Heinz Nixdorf Recall; EURAD, European Air Pollution Dispersion; ESCAPE-LUR, European Study of Cohorts for Air Pollution Effects - 
Land Use Regression; LANUV, State Office for Nature, Environment and Consumer Protection of North Rhine-Westphalia; lGI, local Gyrification Index; IQR, 
interquartile Range; PM2.5 (PM10), particulate matter with aerodynamic diameter ≤2.5 μm (≤10 μm); PNAM, accumulation mode particle number; NOX, any 
nitrogen oxide; NO2, nitrogen dioxide; PM2.5abs, PM2.5absorbance; Lnight, nighttime mean noise (10pm-6am); LDEN, 24h mean noise; Distmajroad, distance to the 
nearest major road; SD, standard deviation  
a from ESCAPE-LUR b in line with EURAD procedures  
c modeled according to European Standards d from LANUV 
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AP and noise exposures were right skewed and only discreetly correlated 

(Spearman correlation coefficient range: 0.17-0.39; Tables 4a and 4b). 

(Nußbaum et al., 2019) 

Table 4a. Spearman correlation coefficients of exposures amongst the 
neuropsychological tests group (n=615). From Nußbaum et al., 2019 

N=615 PM2.5 PM2.5abs PNAM NO2 NOX Distmajroad Lnight LDEN 
PM10 0.89 0.89 0.50 0.51 0.51 -0.51 0.23 0.22 
PM2.5  0.89 0.75 0.62 0.62 -0.40 0.22 0.22 
PM2.5abs   0.56 0.60 0.53 -0.55 0.39 0.39 
PNAM    0.55 0.55 -0.14 0.18 0.17 
NO2     0.94 -0.27 0.30 0.30 
NOX      -0.22 0.23 0.23 
Distmajroad       -0.40 -0.37 
Lnight        0.99 
Abbreviations: PM2.5, particulate matter with aerodynamic diameter ≤2.5 μm; PM10, particulate 
matter with aerodynamic diameter ≤2.5 μm; PAM, accumulation mode particle number; NOX, any 
nitrogen oxide; NO2, nitrogen dioxide; PM2.5abs, PM2.5 absorbance; Lnight, nighttime mean noise 
(10pm-6am); LDEN, 24h mean noise; Distmajroad, distance to the nearest major road 
 
Table 4b. Spearman correlation coefficients of exposures amongst the lGI group (n=590). 
From Nußbaum et al., 2019 

N=615 PM2.5 PM2.5abs PNAM NO2 NOX Distmajroad Lnight LDEN 
PM10 0.89 0.89 0.50 0.51 0.50 -0.50 0.24 0.23 
PM2.5  0.89 0.75 0.62 0.62 -0.39 0.23 0.23 
PM2.5abs   0.56 0.59 0.52 -0.55 0.40 0.40 
PNAM    0.54 0.55 -0.14 0.18 0.17 
NO2     0.94 -0.26 0.30 0.30 
NOX      -0.20 0.22 0.22 
Distmajroad       -0.39 -0.37 
Lnight        0.99 
Abbreviations: lGI, local Gyrification Index; PM2.5, particulate matter with aerodynamic diameter 
≤2.5 μm; PM10, particulate matter with aerodynamic diameter ≤2.5 μm; PAM, accumulation mode 
particle number; NOX, any nitrogen oxide; NO2, nitrogen dioxide; PM2.5abs, PM2.5 absorbance; 
Lnight, nighttime mean noise (10pm-6am); LDEN, 24h mean noise; Distmajroad, distance to the 
nearest major road 
 
3.1.3 Neuropsychological Tests 
The mean results of the neuropsychological tests did not differ much 

between the group of the neuropsychological test analysis and the 

slightly smaller lGI analysis group (Table 5). 

Table 5. Description of neurocognitive test results by domain. From Nußbaum et al., 2019 

Outcome 
Neuropsychological  
Tests Group (n=615) 

 lGI Analysis 
Group (n=590) Range 

Mean ± SD  Mean ± SD 
Attention     

Selective attention, AKTs 35.3 ± 11.9  35.3 ± 12.0 17-136 
Processing speed, TMT As 40.9 ± 17.8  40.8 ± 17.9 16-300 

Executive Function     
Problem solving, LPS50n 20.2 ± 5.1  20.2 ± 5.1 5-34 
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Figural fluency,  FIVEn 26.0 ± 7.5  26.1 ± 7.5 4-57 
Concept shifting, TMT B-As 56.5 ± 40.1  55.9 ± 40.0 2-372 
Susceptibility to interference, 
FWIs 

44.8 ± 25.7  44.8 ± 25.7 4-307 

Memory     
Figural memory, Bentonn 17.3 ± 8.5  17.2 ± 8.5 1-51 
Verbal learning, VGTn 41.4 ± 10.3  41.5 ± 10.2 6-66 
Verbal learning, VGT delayedn 10.6 ± 2.7  10.7 ± 2.6 0-15 

Short-Term/Working Memory     
Visual, VPTn 7.6 ± 1.7  7.6 ± 1.7 4-12 
Visual spatial STM, BTT fwn 6.5 ± 1.8  6.4 ± 1.7 1-12 
Visual spatial WM, BTT bwn 4.8 ± 1.8  4.8 ± 1.8 0-12 
Verbal STM, ZNS fwn 7.7 ± 2.0  7.7 ± 2.1 2-13 
Verbal WM, ZNS bwn 6.8 ± 1.8  6.8 ± 1.8 2-18 

Language     
Phonemic verbal fluency,  

RWT B wordsn 
18.6 ± 6.5  18.6 ± 6.6 2-39 

+ Concept shifting, 
RWT G &R wordsn 

18.8 ± 6.2  18.9 ± 6.2 1-40 

Semantic verbal fluency, 
RWT Occupationsn 

23.8 ± 6.9  23.7 ± 6.9 5-50 

+ Concept shifting, 
RWT Sports / Fruitsn 

19.8 ± 4.8  19.9 ± 4.8 4-37 

Vocabulary, WSTn 30.8 ± 5.2  30.7 ± 5.1 2-41 
Abbreviations: AKT, Alter-Konzentrations-test; TMT A, Trail Making test (part A); LPS50, 
Subtest 3 of “Leistungsprüfungssystem 50+”; FIVE, Fünf-Punkte-test; TMT B-A, Trail Making 
test part B minus Trail Making Test part A; FWI, Color-Word Interference Test; VGT, Verbaler 
Gedächtnistest; VPT, Visual-Pattern-test; STM, short-term memory; WM, working memory; 
BTT, Block-tapping test; fw, forwards; bw, backwards; ZNS, Zahlennachsprechen; RWT, 
Regensburger Wortflüssigkeitstest; WST, Wortschatztest; SD, standard deviation 
s measured in seconds 
n measured in number 
 
3.1.4 local Gyrification Index Values 
Mean lGI values were lowest in the DLPFC and highest in the IPL. The right 

hemisphere showed a broader range of lGI values than the left hemisphere over 

all regions (Table 6). (Nußbaum et al., 2019) 

Table 6. Description of MRI scan local Gyrification Index (lGI) results in the lGI analysis group 
(n=590). From Nußbaum et al., 2019 

Outcome Mean ± SD Range 
Right Hemisphere   
     DLPFC 2.64 ± 0.13 2.28-3.34 
     PCC/P 2.73 ± 0.17 2.19-3.27 
     IPL 2.93 ± 0.14 2.46-3.40 
Left Hemisphere   
     DLPFC 2.50 ± 0.13 2.10-2.92 
     PCC/P 2.76 ± 0.18 2.27-3.29 
     IPL 2.98 ± 0.13 2.63-3.40 
Abbreviations: MRI, Magnetic Resonance Imaging; lGI, local Gyrification Index; DLPFC, 
dorsolateral prefrontal cortex; PCC/P, posterior cingulate cortex and precuneus; IPL, inferior 
parietal lobule  
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3.2 AP, Noise, and Neuropsychological Tests 
The discovery models with domain scores showed negative associations of AP 

and noise exposure with cognitive function belonging to the Language domain 

(Figure 3). For other domains, no consistent associations were found. 

(Nußbaum et al., 2019) 

 

Figure 3. Beta estimates and 95% CI for the associations of AP and noise exposures with 
cognitive domain scores. N=615. Linear regression models were adjusted for age, sex, and 
SES (Discovery Model). From Nußbaum et al., 2019 

 
In addition, all separate tests of the Language domain showed similar negative 

associations (Figure 4). (Nußbaum et al., 2019) 
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Figure 4. Beta estimates and 95% CI for the associations of AP and noise exposures with 
neuropsychological test results from the Language Domain. N=615. Linear regression models 
were adjusted for age, sex, and SES (Discovery Model). From Nußbaum et al., 2019 

 
The individual tests in the Short Term/Working Memory domain showed 

diverging associations. AP exposure was positively associated with visual 

spatial short-term memory and negatively with verbal short-term memory 

(Figure 5). Noise exposure was negatively associated with visual working 

memory (Figure 5). (Nußbaum et al., 2019) 
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Figure 5. Beta estimates and 95% CI for the associations of AP and noise exposures with 
neuropsychological test results from the Short-Term/Working Memory Domain. N=615. Linear 
regression models were adjusted for age, sex, and SES (Discovery Model). From Nußbaum et 
al., 2019 

 
The separate neuropsychological tests in the three other domains showed no 

clear pattern of association (Figures 6-8). (Nußbaum et al., 2019) 
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Figure 6. Beta estimates and 95% CI for the associations of AP and noise exposures with 
neuropsychological test results from the Attention Domain. N=615. Linear regression models 
were adjusted for age, sex, and SES (Discovery Model). From Nußbaum et al., 2019 

 

Figure 7. Beta estimates and 95% CI for the associations of AP and noise exposures with 
neuropsychological test results from the Executive Function Domain. N=615. Linear regression 
models were adjusted for age, sex, and SES (Discovery Model). From Nußbaum et al., 2019 
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Figure 8. Beta estimates and 95% CI for the associations of AP and noise exposures with 
neuropsychological test results from the Memory Domain. N=615. Linear regression models 
were adjusted for age, sex, and SES (Discovery Model). From Nußbaum et al., 2019 

 
Confidence Intervals (CIs) for all models were roughly around the same size, 

except for models with nighttime noise which CIs were approximately two times 

wider and models with distance to the nearest road which CIs were three times 

wider in comparison to the other models.  

All estimates were attenuated in the further adjusted models when adding 

lifestyle variables and especially when adding neighborhood unemployment rate 

(Tables S1-S5). (Nußbaum et al., 2019) 

 

3.3 AP, Noise, and Brain Structure 
3.3.1 Right Hemisphere 
The main models showed associations of IQR increases in PM10, PM2.5, NOx, 

and NO2 and lower lGI values in the right PCC/P (e.g., -0.02 [95% confidence 

interval (CI): -0.04, 0.00] per 1.4 μg/m3 PM2.5) and the right IPL (e.g., -0.01 [95% 

CI: -0.03, 0.00] per 5.3 μg/m3 NO2; Figure 9). AP associations in the right 

DLPFC were less clear, but an IQR increase in PNAM was associated with lower 
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lGI values (-0.02 [95% CI: -0.04, 0.00]). Contrary, 10 dB[A] increases in Lnight 

and in LDEN showed an association with higher lGI values in the DLPFC (e.g., 

0.03 [95% CI: 0.00, 0.05] for Lnight; Figure 9). The two other regions had no 

associations with noise exposures. Lastly, participants who lived between 100 

m and 200 m from a heavily trafficked road had lower lGI values in the right 

DLPFC (-0.06 [95% CI: -0.12, -0.01]) and in the PCC/P (-0.07 [95% CI: -0.13, 

0.00]) than participants who lived 200 m or more from a heavily trafficked road 

(Figure 9). (Nußbaum et al., 2019) 

 

Figure 9. Beta estimates and 95% CI for the associations of AP and noise exposures with lGI in 
the DLPFC, PCC/P, and IPL of the right hemisphere. N=590. Linear regression models were 
adjusted for age, sex, SES, alcohol consumption, smoking status, cumulative pack-years, ETS, 
physical activity, and neighborhood unemployment rate (Main Model). Abbreviations: lGI, local 
Gyrification Index; DLPFC, dorsolateral prefrontal cortex; PCC/P, posterior cingulate cortex and 
precuneus; IPL, inferior parietal lobule. From Nußbaum et al., 2019  
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3.3.1 Left Hemisphere 
No stringent pattern of associations was found between the left hemispheric lGI 

values and AP or noise exposures (Figure 10). (Nußbaum et al., 2019) 

 
Figure 10. Beta estimates and 95% CI for the associations of AP and noise exposures with lGI 
in the DLPFC, PCC/P, and IPL of the left hemisphere. N=590. Linear regression models were 
adjusted for age, sex, SES, alcohol consumption, smoking status, cumulative pack-years, ETS, 
physical activity, and neighborhood unemployment rate (Main Model). Abbreviations: lGI, local 
Gyrification Index; DLPFC, dorsolateral prefrontal cortex; PCC/P, posterior cingulate cortex and 
precuneus; IPL, inferior parietal lobule. From Nußbaum et al., 2019 

 
The estimates for all crude, base and main models for both hemispheres can be 

seen in Table S6. (Nußbaum et al., 2019) 
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3.4 Effect Modification 
3.4.1 Age 
In the right PCC/P, the effect modification analysis for age showed lower lGI 

values in association to PNAM exposure for participants 61 years or older com-

pared with participants younger than 61 (lr-test: 0.02; Figure 11, d); also 

subgroup ‘Young’ showed lower lGI values in association to weighted 24h (lr-

test: 0.04) and nighttime (lr-test: 0.03) noise exposure than subgroup ‘Old’ 

(Figure 12, e-f). In the left DLPFC, subgroup ‘Old’ showed higher lGI values in 

association to weighted 24h (lr-test: 0.04) and nighttime (lr-test: 0.02) noise 

exposure than subgroup ‘Young’ (Figure 12, e-f). For other AP/noise exposures 

and brain regions, no effect modification by age was found (Figure 11, a-c, and 

Figure 12, a-d). 

Figure 11. Beta estimates and 95% CI for the associations of particulate matter and lGI values 
in all brain regions by age (<61 years [Young] and ≥61 years [Old]). N=590. Linear regression 
models were adjusted for age (dichotomized at the median of 61), sex, SES, alcohol 
consumption, smoking status, cumulative pack-years, ETS, physical activity, and neighborhood 
unemployment rate. Age was also included as product term. Abbreviations: lGI, local 
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Gyrification Index; IQR, interquartile range; rh, right hemisphere; lh, left hemisphere; DLPFC, 
dorsolateral prefrontal cortex; PCC/P, posterior cingulate cortex and precuneus; IPL, inferior 
parietal lobule. 

 
Figure 12. Beta estimates and 95% CI for the associations of nitrogen oxides, distance to the 
nearest major road, noise exposure and lGI values in all brain regions by age (<61 years 
[Young] and ≥61 years [Old]). N=590. Linear regression models were adjusted for age 
(dichotomized at the median of 61), sex, SES, alcohol consumption, smoking status, cumulative 
pack-years, ETS, physical activity, and neighborhood unemployment rate. Age was also 
included as product term. Abbreviations: lGI, local Gyrification Index; IQR, interquartile range; 
rh, right hemisphere; lh, left hemisphere; DLPFC, dorsolateral prefrontal cortex; PCC/P, 
posterior cingulate cortex and precuneus; IPL, inferior parietal lobule. 
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3.4.2 Smoking Status 
In the left PCC/P, the effect modification analysis for smoking status showed 

higher lGI values in association to PNAM exposure for current smokers in 

comparison to never smokers and ex- smokers (lr-test: 0.004; Figure 13, d). For 

other AP and noise exposures and brain regions, no effect modification by 

smoking status was found (Figure 13, a-c, and Figure 14). 

Figure 13. Beta estimates and 95% CI for the associations of particulate matter and lGI values 
in all brain regions by smoking status (never smoker, ex-smoker, and current smoker). N=590. 
Linear regression models were adjusted for age, sex, SES, alcohol consumption, smoking 
status, cumulative pack-years, ETS, physical activity, and neighborhood unemployment rate. 
Smoking status was also included as product term. Abbreviations: lGI, local Gyrification Index; 
IQR, interquartile range; rh, right hemisphere; lh, left hemisphere; DLPFC, dorsolateral 
prefrontal cortex; PCC/P, posterior cingulate cortex and precuneus; IPL, inferior parietal lobule. 
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Figure 14. Beta estimates and 95% CI for the associations of nitrogen oxides, distance to the 
nearest major road, noise exposure and lGI values in all brain regions by smoking status (never 
smoker, ex-smoker, and current smoker). N=590. Linear regression models were adjusted for 
age, sex, SES, alcohol consumption, smoking status, cumulative pack-years, ETS, physical 
activity, and neighborhood unemployment rate. Smoking status was also included as product 
term. Abbreviations: lGI, local Gyrification Index; IQR, interquartile range; rh, right hemisphere; 
lh, left hemisphere; DLPFC, dorsolateral prefrontal cortex; PCC/P, posterior cingulate cortex 
and precuneus; IPL, inferior parietal lobule. 
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3.4.3 Sex and SES 
No effect modification by sex or SES was found (Figures 15-18). 

Figure 15. Beta estimates and 95% CI for the associations of particulate matter and lGI values 
in all brain regions by sex. N=590. Linear regression models were adjusted for age, sex, SES, 
alcohol consumption, smoking status, cumulative pack-years, ETS, physical activity, and 
neighborhood unemployment rate. Sex was also included as product term. Abbreviations: lGI, 
local Gyrification Index; IQR, interquartile range; rh, right hemisphere; lh, left hemisphere; 
DLPFC, dorsolateral prefrontal cortex; PCC/P, posterior cingulate cortex and precuneus; IPL, 
inferior parietal lobule.  
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Figure 16. Beta estimates and 95% CI for the associations of nitrogen oxides, distance to the 
nearest major road, noise exposure and lGI values in all brain regions by sex. N=590. Linear 
regression models were adjusted for age, sex, SES, alcohol consumption, smoking status, 
cumulative pack-years, ETS, physical activity, and neighborhood unemployment rate. Sex was 
also included as product term. Abbreviations: lGI, local Gyrification Index; IQR, interquartile 
range; rh, right hemisphere; lh, left hemisphere; DLPFC, dorsolateral prefrontal cortex; PCC/P, 
posterior cingulate cortex and precuneus; IPL, inferior parietal lobule. 

 

 



40 
 

Figure 17. Beta estimates and 95% CI for the associations of particulate matter and lGI values 
in all brain regions by SES (high, medium-high, medium-low, and low). N=590. Linear 
regression models were adjusted for age, sex, SES, alcohol consumption, smoking status, 
cumulative pack-years, ETS, physical activity, and neighborhood unemployment rate. SES was 
also included as product term. Abbreviations: lGI, local Gyrification Index; IQR, interquartile 
range; rh, right hemisphere; lh, left hemisphere; DLPFC, dorsolateral prefrontal cortex; PCC/P, 
posterior cingulate cortex and precuneus; IPL, inferior parietal lobule. 
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Figure 18. Beta estimates and 95% CI for the associations of nitrogen oxides, distance to the 
nearest major road, noise exposure and lGI values in all brain regions by SES (high, medium-
high, medium-low, and low). N=590. Linear regression models were adjusted for age, sex, SES, 
alcohol consumption, smoking status, cumulative pack-years, ETS, physical activity, and 
neighborhood unemployment rate. SES was also included as product term. Abbreviations: lGI, 
local Gyrification Index; IQR, interquartile range; rh, right hemisphere; lh, left hemisphere; 
DLPFC, dorsolateral prefrontal cortex; PCC/P, posterior cingulate cortex and precuneus; IPL, 
inferior parietal lobule. 
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3.5 Sensitivity Analysis 
3.5.1 BMI, CHD, depression, and diabetes 
The individual addition of BMI, CHD, depression, and diabetes in the sensitivity 

analyses did not change the results of the main model (Figures 19-20). 

(Nußbaum et al., 2019) 

Figure 19. Beta estimates and 95% CI for the associations of particulate matter and lGI values 
in all brain regions. N=590. The Main model was adjusted for age, sex, SES, alcohol 
consumption, smoking status, cumulative pack-years, ETS, physical activity, and neighborhood 
unemployment rate. Sensitivity models separately included BMI, Diabetes, Depression, and 
CHD in addition to the main model. Abbreviations: lGI, local Gyrification Index; IQR, interquartile 
range; DLPFC, dorsolateral prefrontal cortex; PCC/P, posterior cingulate cortex and precuneus; 
IPL, inferior parietal lobule; CHD, coronary heart disease diagnosis; lh, left hemisphere; rh, right 
hemisphere. From Nußbaum et al., 2019   
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Figure 20. Beta estimates and 95% CI for the associations of nitrogen oxides, distance to the 
nearest major road, noise exposure and lGI values in all brain regions. N=590. The Main model 
was adjusted for age, sex, SES, alcohol consumption, smoking status, cumulative pack-years, 
ETS, physical activity, and neighborhood unemployment rate. Sensitivity models separately 
included BMI, Diabetes, Depression, and CHD in addition to the main model. Abbreviations: lGI, 
local Gyrification Index; IQR, interquartile range; DLPFC, dorsolateral prefrontal cortex; PCC/P, 
posterior cingulate cortex and precuneus; IPL, inferior parietal lobule; CHD, coronary heart 
disease diagnosis; lh, left hemisphere; rh, right hemisphere. Modified from Nußbaum et al., 
2019    
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3.5.2 Non-working participants only and two-exposure models 
Generally, CIs got wider in the non-working and two-exposure analyses and 

associations between AP exposure and lGI values were attenuated (Figure 21 

and Figure 22, a-d). Associations between noise exposures and lGI values were 

robust to sensitivity analysis among non-working people only and with double 

exposure models (Figure 22, e-f). 

Figure 21. Beta estimates and 95% CI for the associations of particulate matter and lGI values 
in all brain regions. N=590. The Main model was adjusted for age, sex, SES, alcohol 
consumption, smoking status, cumulative pack-years, ETS, physical activity, and neighborhood 
unemployment rate. Sensitivity models included running the analysis among non-working 
people only (n=310) and adding PM2.5 to the main model (Lnight to the PM2.5 model) for the 
double exposure analysis. Abbreviations: lGI, local Gyrification Index; IQR, interquartile range; 
DLPFC, dorsolateral prefrontal cortex; PCC/P, posterior cingulate cortex and precuneus; IPL, 
inferior parietal lobule; lh, left hemisphere; rh, right hemisphere 
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Figure 22. Beta estimates and 95% CI for the associations of nitrogen oxides and distance to 
the nearest major road and lGI values in all brain regions. N=590. The Main model was adjusted 
for age, sex, SES, alcohol consumption, smoking status, cumulative pack-years, ETS, physical 
activity, and neighborhood unemployment rate Sensitivity models included running the analysis 
among non-working people only (n=310) and adding PM2.5 to the main model (Lnight to the PM2.5 
model) for the double exposure analysis.. Abbreviations: lGI, local Gyrification Index; IQR, 
interquartile range; DLPFC, dorsolateral prefrontal cortex; PCC/P, posterior cingulate cortex and 
precuneus; IPL, inferior parietal lobule; lh, left hemisphere; rh, right hemisphere 
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4 Discussion 
4.1 Summary of the Results 
Long-term AP and noise exposure showed associations with neurocognitive test 

performance that can be assigned to the domains of Short-Term/Working 

Memory and Language. On this foundation, further structural MRI analyses 

focused on the functionally relevant FPN. (Nußbaum et al. 2019)   

AP exposures showed negative associations with right hemispheric lGI values 

over all three regions of the FPN. Noise exposures showed a positive 

association in the frontal region. In the left hemisphere, no associations 

between exposures and lGI could be seen. (Nußbaum et al., 2019) 

In addition, some suggestive evidence for effect modification by age and by 

smoking status was found, but none for sex and SES. Sensitivity analysis 

showed robustness of all models to separately adding BMI, diabetes, 

depression, and CHD. AP models were attenuated by analysis among non-

working participants only and double exposure analysis with noise models being 

also robust to these. 

 

4.2 Interpretation of the Results 
4.2.1 Main Results 
The aim of this thesis was to research associations between long-term AP and 

noise exposure and local structural changes in the brain coinciding with 

cognitive performance losses. As structural feature for investigation the local 

gyrification index was chosen, as it is a marker of regional brain atrophy in the 

aging brain. (Nußbaum et al., 2019) 

In addition, effect modification and sensitivity analysis were meant to open up 

ways of further research in the directions of possible mediating and modulating 

effects by demographic and lifestyle variables. 

Prior studies featured associations between PM2.5, PM10, and Distmajroad and 

lower total, grey and white matter volumes as markers for brain structure 

(Casanova et al., 2016; Chen et al., 2015; Power et al., 2018; Wilker et al., 
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2015). These studies along with the findings in this thesis of regional alteration 

of brain structure, further the possibility of the presence of an association 

between AP and brain atrophy in function-specific regions during the 

physiological aging process. (Nußbaum et al., 2019) 

 
4.2.1.1 Right Hemi-Aging Theory  

Only the lGI values of the right hemispheric DLPFC, PPC/P, and IPL showed a 

negative association with AP exposure. (Nußbaum et al., 2019) 

The right hemi-aging theory (Albert and Moss, 1988; Brown and Jaffe, 1975; 

Dolcos et al., 2002; Goldstein and Shelly, 1981; Grady et al., 1994) delivers an 

explanation for the solely right hemispheric effect. The right hemi-aging theory 

is based on the observation that functional alterations during physiological aging 

occur earlier in the right hemisphere than in the left hemisphere of the brain. It is 

suggested that the right hemisphere might age faster and accumulate changes 

attributable to aging to a greater extend. Although at first only supported by 

neuropsychological test data and thus driven by brain function, present 

literature also shows support for the theory when looking at brain structure (e.g. 

Jockwitz et al., 2017; Kovalev et al., 2003) and functional connectivity (e.g. Lu 

et al., 2011). This leads to the conclusion that AP exposure might speed up 

normal aging related changes in the brain, also leading to a higher adverseness 

of endogenous or exogenous risk factors for damaging processes in the brain. 

(Nußbaum et al., 2019) 

A slightly different, but in terms of patho-mechanisms also relevant, explanation 

to consider might be that AP already makes up for a portion of the physiological 

aging process of the brain which everyone experiences in his or her lifetime and 

which has been investigated so far without special consideration of AP. The 

current analysis might have been able to deduct and damask that there might 

actually be a portion of the physiological aging process that is attributable to AP 

exposure. 

4.2.1.2 Posterior-Anterior Shift in Aging Theory 

Overall, PM2.5, PM10, NOX, and NO2 had similar effects on local brain structure 

of the three observed brain areas of the right hemisphere. The right DLPFC was 
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not associated with these pollutants, whereas the right PCC/P and IPL showed 

decreases in lGI values with higher levels of exposure. (Nußbaum et al., 2019) 

The posterior-anterior shift in aging theory (PASA; Davis et al., 2008) delivers 

an explanation for the missing effect on frontal brain areas. The PASA theory is 

based on the observation that, in aging participants, frontal brain areas showed 

more activation where posterior ones were less activated. It is suggested that 

this resembles compensational processes for a loss of functioning in the 

posterior areas. Although at first only supported by data on brain function, 

present literature also delivers support for the theory when looking at brain 

structure (e.g. Jockwitz et al., 2017). The theory indicates that functional 

damage in posterior areas might be compensated by higher levels of activation 

in frontal regions, perhaps triggering processes of brain plasticity, regional 

hypertrophy and higher lGI values in these more active regions. (Nußbaum et 

al., 2019)         

PASA, as mentioned above, could explain why there was no effect on the 

frontal brain regions. Because of the compensatory processes, an adverse 

effect of PM2.5, PM10, NOX, and NO2 on the DLPFC could have been masked by 

opposing effects of hypertrophy. (Nußbaum et al., 2019) 

As current mechanistic pathways for the effects of PM, NO2, and NOx direct 

and indirect effects on the body via inhalation through the lungs are assumed 

(WHO Regional Office for Europe, 2013). They might also have an impact on 

the brain via indirect triggering of systemic and local inflammation. These would 

be processes that could affect all of the observed brain regions via the cerebral 

arteries (Block and Calderón-Garcidueñas, 2009; Jayaraj et al., 2017). 

(Nußbaum et al., 2019) 

In this context, it is of interest whether differences in hemodynamics and overall 

blood flow between different brain areas contribute to a different accessibility of 

AP effects to the brain tissue. If, in frontal brain regions, the higher blood flow – 

as implied by PASA - and thus different hemodynamic behavior is accompanied 

by a lower accessibility of AP effects to the brain tissue, this would be a rivaling 

effect for the hypothesis of hypertrophy. On the other hand, a higher blood flow 

could also lead to a higher local exposure to AP effects, which would then 
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question the current findings. Therefore, this relationship between blood flow to 

a specific brain region and accessibility of adverse effects due to AP on the 

local brain tissue in question needs to be further investigated. 

 
4.2.1.3 Special Role of PNAM 

PNAM showed a single negative association with lGI values of the right 

hemispheric DLPFC. (Nußbaum et al., 2019) 

The mechanistic pathway for PM, NO2, and NOx, as mentioned above, is 

thought to be mainly via the cerebral arteries. PNAM, on the other hand, is 

suggested to additionally impact the brain through another way. Following nasal 

intake, very small particles or small particle-induced inflammatory processes 

might be transported to frontal brain areas via axons from the olfactory nerve 

and the olfactory bulb (Elder et al., 2006; Oberdörster et al., 2004). The possibly 

resulting relatively high concentrations of PNAM in frontal brain regions together 

with the right-hemi aging theory might be the reason for the solitary adverse 

association of PNAM exposure and the right DLPFC. (Nußbaum et al., 2019) 

Notably, PASA would indicate that aging related structural changes would be 

only seen later in the DLPFC in the context of brain aging. Especially this region 

seems to be affected by PNAM in the present study, indicating a high 

adverseness of PNAM or PNAM related damaging processes in a region known to 

have a relatively high capability of preserving its function and structure into old 

age. One possible explanation might be that PNAM might reach frontal brain 

areas faster, earlier and in higher quantities via the olfactory transport 

mechanism than other AP exposures can. (Nußbaum et al., 2019) 

The effect modification analysis for age showed a negative association between 

PNAM exposure and lGI values in posterior regions of the right hemisphere in the 

subgroup ‘Old’. This association was neither present in the subgroup ‘Young’ 

nor in the frontal region of the right hemisphere. This indicates that during the 

aging process the vulnerability of posterior regions to PNAM might be enhanced. 

If the proposed mechanistic pathway of nasal intake and axonal transport holds 

true, the findings of this thesis would align well in suggesting a spread of 

damaging processes due to PNAM from frontal to posterior areas in the course 
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of aging. Again, these processes could be either inflammatory or further axonal 

transport. Because there is a lack of negative association between PNAM and 

lGI values in the frontal region, this would also mean that there is a limit for the 

damaging capability of PNAM in the DLPFC.  

The effect modification analysis for smoking status showed higher lGI values in 

association to PNAM in the left PCC/P for current smokers in comparison to non-

smokers and ex-smokers. Though smoking could possibly induce atrophy of the 

olfactory nerve as it is associated with olfactory impairment (Frye et al., 1990; 

Katotomichelakis et al., 2007) and thus might lead to lower sensitivity to PNAM 

via the proposed olfactory axonal transport mechanism, this theory cannot 

explain the observed positive association and possibly protective effect. Another 

aspect of smoking to consider is the effect nicotine has on the brain. Studies 

have shown that nicotine might have a neuroprotective effect in the domains of 

attention, working memory, and executive function (Swan and Lessov-

Schlaggar, 2007). One major way nicotine affects the brain is via up-regulation 

of nicotinic acetylcholine receptors and involvement in neurotransmitter 

pathways in the brain (Sabbagh et al., 2002; Swan and Lessov-Schlaggar, 

2007). How AP might intervene in these processes is not clear and needs to be 

investigated. In this context, special attention should be given to inter-individual 

genetic variability, because it has already been shown that the effect of nicotine 

on the brain is modulated by inter-individual genetic variation (Jacobsen et al., 

2006).    

 
4.2.1.4 Noise Exposure 

Higher 24h mean weighted noise and nighttime noise exposures showed 

positive associations with lGI values in the right DLPFC but no associations at 

all in the lGI values of the other regions of the FPN. On the one hand, this could 

hint at the possibility that there is actually no adverse effect of noise exposure 

on brain structure; maybe there is even a positive effect on the DLPFC. On the 

other hand, in the analysis, outdoor facade noise values were considered as 

real noise exposure for each participant. In reality, this might not always hold 

true, as oftentimes more exposed people display stronger protective behavior. 

This protective behavior might include closing windows more often and for 
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longer periods of the day or the installment of sound-proof windows. The 

systematic differences in protective behaviors might have confounded the 

analysis and might have led to misclassification of actual, i.e. indoor, noise 

exposure. Therefore, future studies need to include indoor noise exposure as a 

supposedly better assessment of real noise exposure levels. (Nußbaum et al., 

2019)    

Conversely, if future studies confirm these counter-intuitive results, PASA might 

deliver another explanation. The effects noise might have on the brain could be 

rather diffuse than locally confined. Firstly, noise is made up of energy-carrying 

sound waves, which might affect the whole brain fairly equally distributed 

through physical interaction. This would result in minor damage to brain cells all 

over the brain. Secondly, annoyance because of noise exposure might trigger 

stress-related processes in the brain which again would lead to diffuse brain 

damage. Thirdly, bad sleep quality due to nightly noise exposure (Schapkin et 

al., 2006) might inhibit nightly reorganization processes during sleep that are 

needed to prevent diffuse brain damage. This proposed diffuse damage could 

have not been detected via our locally confined lGI analysis. Either every single 

of these diffuse damage spots was still too small to be detected or they were in 

regions outside the FPN as regions this analysis did not include. Nevertheless, 

this diffuse minor structural damage might have a cumulative negative effect on 

overall brain function leading to brain plasticity and possibly hypertrophy in 

frontal brain regions in the sense of PASA compensational processes. The 

analysis on cognitive test data supports a possibly damaging effect of noise 

exposure on higher cognitive functioning. The most adversely effects were 

found in verbal fluency and vocabulary test performance. (Nußbaum et al., 

2019)    

In addition, the effect modification analysis found that the higher lGI values in 

frontal regions of the FPN were driven by the ‘Old’ subgroup. This indicates that 

an effect of noise on the brain might increase or accumulate over years of 

aging. Alternatively, the damage compensating processes according to PASA 

theory might only set in later in life or the threshold of noise induced damage 

might be reached later. Interestingly, the subgroup ‘Young’ shows a negative 

association between noise and lGI values in the PCC/P. This association is not 
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present for the subgroup ‘Old’ and could be explained by the theory that 

younger participants might have more brain tissue to lose. In older participants 

this region might have already taken an amount of damage that cannot be 

increased further. Both associations together indicate that young participants 

might over years of aging accumulate damage in posterior areas which then 

leads to cognitive performance losses and PASA compensatory processes and 

hyper-plasticity in frontal regions.  

Although indicative results on cognitive functioning have been found, the 

analysis on brain structure does not deliver a cohesive picture. In summary, 

further studies are needed to investigate possible associations between long-

term noise exposure and brain atrophy. 

 
4.2.1.5 Sex- and Socioeconomic-Independent Effects 

Overall, no effect modification for sex and SES was found. This indicates that 

AP and noise exposures show associations independent of sex and SES, which 

emphasizes the impact of environmental exposures on both men and women 

and people of every socioeconomic / educational status. It furthers the 

population-wide importance of the matter and highlights the significance of 

implementing protective measures that reach all of those population groups 

equally.  

 
4.2.2 Sensitivity analysis 
The stability of the models under sensitivity analysis adjustment for BMI, 

diabetes, depression, and CHD speaks for the robustness of the models and 

suggests no underlying confounding by these variables. 

The analysis among working people showed a widening of CIs which is 

expected when reducing the sample size from N=590 to N=310. It also showed 

a slight attenuation of estimates for AP models which could be explained by 

exposure misclassification being present in the study or the sample size being 

too small to detect the small effects these exposures might have, which seems 

plausible as most CIs are still nearly fully overlapping between the main models 

and the working people only models. Another reason might be that the results 
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are driven by working people. As work supposedly stimulates brain plasticity 

and leads to better preserved brain structure overall, they might have more 

brain tissue and capacity at risk. Not including working people might mean not 

including the actual population at risk.    

The double exposure models with AP had also wider CIs and slight attenuation 

of the estimates. Considering the high correlation between PM2.5 and the other 

AP exposures this result seems plausible. Also as PM2.5 is part of PM10 

indicates, that the association seen in the PM10 analysis might actually be driven 

by the PM2.5 fraction.  

Noise models were robust to analysis among working people only and double 

exposure models, indicating good model fit and absence of exposure 

misclassification.    

 

4.3 Future Studies 
Future studies should consider investigating functional connectivity of the FPN 

in the context of AP and noise exposure. This would show whether the given 

interpretations on PASA and right hemi-aging theories can be upheld when also 

considering functional network reorganization. Moreover, we still need more 

basic experimental research with animal and human brain tissue and brain 

imaging studies on local differences in association to AP to further develop 

pathways and mechanisms. For a complete understanding of AP effects on the 

brain, we need to research the crossing or circumvention of the blood-brain-

barrier by AP and further investigate additional indirect AP effects without direct 

contact with brain tissue. Additionally, it would be of interest to know which 

particles reach which brain regions in what quantities. (Nußbaum et al., 2019) 

With noise, so far there have been no basic studies on mechanisms by which it 

might affect the brain. Consequently, work needs to be done on AP effects on 

activation and deactivation of brain regions via auditory input and channeling 

through the auditory system and whether these changes in activation levels 

impact brain plasticity and brain structure and function at all. (Nußbaum et al., 

2019) 
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Moreover, it would be of interest to evaluate whether noise exposure interacts 

directly with the brain via the physical properties of sound waves, which carry a 

significant amount of energy and could possibly damage the brain tissue. 

At present, there is a debate amongst scientists which structural feature is 

suited best for investigating the structure of the aging brain. On the one hand, 

lGI is suited to investigate even small changes in the cortical surface and 

corresponds directly to cortical neuron numbers and the brain’s processing 

capabilities. On the other hand, it has limits when considering brain volume and 

is not the only marker for brain atrophy. (Nußbaum et al., 2019)  For a greater 

understanding of the whole research topic and better comparability to other 

studies on brain structure, further markers should be also considered (e.g. total 

brain volume, volume of gray and white matter, or cortical thickness).  

For clarifying the different effects AP and noise might have at different ages and 

identifying the population most at risk, it might be of interest to look at 

populations of different ages and possibly also conduct a prospective 

longitudinal cohort study with several follow up examinations, multiple lGI 

analyses and repeated assessment of exposure levels over several years. 

As smoking seems to be able to modulate the association between PNAM and 

brain structure, further research needs to be done in order to confirm or dismiss 

the seemingly positive effect of smoking. In this context, especially the effect on 

olfactory axonal transport mechanisms and possible mechanistic interactions of 

AP and nicotine seem to be of interest.      

 

4.4 Strengths and Limitations of the Study 
One strength of this thesis was the inclusion of participants over a large age 

span (55-85 years at FU1), so the analysis could very well handle the research 

topic considering the aging brain. Where Casanova et al. (2016) and Chen et al. 

(2015) only included women into their studies, the present study was able to 

include a fairly balanced population of 45.3% women and 54.7% men. 

(Nußbaum et al., 2019) 
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This thesis benefitted from the broad individual-level assessment within the 

Heinz Nixdorf Recall and the 1000BRAINS study, as these studies generated 

extensive data on exposures and covariates as possible confounding variables. 

Especially notable is the data on neuropsychological testing and MRI from the 

1000BRAINS study, as both of these together are seldom available in one 

cohort study. (Nußbaum et al., 2019) 

Furthermore, the approach of investigating differences in task-specific, fronto-

parietal regions, and not only global differences in brain structure, directly 

connects this work to preceding studies on cognitive function and AP and noise 

exposure. Although there already have been studies on brain structure and AP 

with volumetric measures, this seems to be the first work to include lGI as 

another important structural feature of the brain. In addition, this is also the first 

study to investigate noise and brain structure and thus it is the first study to 

investigate AP, noise exposure and brain structure altogether. As previous 

studies only used PM2.5 (Casanova et al., 2016; Chen et al., 2015), PM2.5 and 

PM10 (Power et al., 2018), or PM2.5 and Distmajroad (Wilker et al., 2015), this 

thesis also included a wider range of exposures. (Nußbaum et al., 2019) 

In the sensitivity analysis possible further confounders were examined which 

solidified the quality of the models. Extensive effect modification analysis 

showed the varying relevance of age, smoking status, sex, and SES for AP and 

noise exposure effects on the brain. 

One of the limitations of this thesis was the lower number of participants 

(n=590) when compared to preceding studies of this kind. Although the 

implemented exposure models are well established and validated for 

epidemiological research, exposure misclassification can be expected to have 

occurred, especially for participants who spent much time away from their home 

address. As for noise exposure, possibility of protective behavior in high 

exposed individuals was not considered. (Nußbaum et al., 2019) 

Moreover, neuropsychological test models were attenuated under addition of 

lifestyle and neighborhood variables, particularly the neighborhood 

unemployment rate. As over time, the development of cognitive capabilities 

relates to the environment in which people get their cognitive stimuli, 
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investigation of the effect neighborhood variables have on cognition in studies 

concerning AP and noise exposure seems to be important. 

The role of smoking in possibly altering or modulating the mechanisms by which 

AP, especially PNAM, affects the brain needs to be further investigated. Thus, a 

comparing study of current smokers, former smokers and ex-smokers could be 

done as in the present study population size for smokers was only N=91.  

In the working people only analysis just a smaller population size of N=310 

could be used. In order to solidify the results that seemingly were driven by 

working people mainly, the number of participants could be increased in 

following works.     

 

4.5 Conclusion 
This thesis contributes to the body of evidence for the existence of structural 

changes in the brain due to long-term AP and noise exposure coinciding with 

cognitive performance losses. The observation of associations between AP and 

local brain structure for only the right hemisphere stands in agreement with the 

right hemi-aging theory and implicates an involvement of AP exposure in the 

physiological aging process. Likewise, the predominance of associations for 

posterior brain regions aligns well with the PASA theory on brain aging. 

Upcoming works should focus on the combination of brain structure with 

structural as well as functional connectivity and consider age, smoking status, 

employment status, and neighborhood variables as possible modifiers of long-

term AP and noise exposure effects. (Nußbaum et al., 2019)  
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Supplement  
Table S1. Estimates of the cognitive domain models per IQR increase in mean exposure levels with increasing model adjustment among the 
Neuropsychological Tests group (n=615) of the 1000BRAINS study. From Nußbaum et al., 2019 
 Cognitive Domain 
Exposure / 
Adjustment Model Attention Executive 

Function Memory Short Term/Working 
Memory Language 

PM10(μg/m3)      
   Discoverya -0.01 (-0.05; 0.03) -0.01 (-0.04; 0.03) -0.02 (-0.06; 0.02) 0.00 (-0.03; 0.03) -0.03 (-0.06; 0.01) 
   Extendedb -0.01 (-0.05; 0.03) 0.00 (-0.03; 0.03) -0.01 (-0.05; 0.03) 0.00 (-0.03; 0.03) -0.02 (-0.05; 0.02) 
   Extended-Plusc -0.01 (-0.05; 0.04) 0.01 (-0.03; 0.05) 0,00 (-0.04; 0.04) 0.00 (-0.03; 0.04) 0.00 (-0.04; 0.04) 
PM2.5 (μg/m3)      
   Discoverya -0.03 (-0.08; 0.02) -0.02 (-0.05; 0.02) -0.03 (-0.07; 0.01) -0.01 (-0.04; 0.03) -0.05 (-0.10; -0.01) 
   Extendedb -0.02 (-0.07; 0.02) -0.01 (-0.04; 0.03) -0.01 (-0.06; 0.03) 0.00 (-0.04; 0.03) -0.04 (-0.08; 0.01) 
   Extended-Plusc -0.02 (-0.08; 0.03) 0.01 (-0.03; 0.05) -0.01 (-0.06; 0.04) 0.01 (-0.03; 0.05) -0.02 (-0.07; 0.03) 
PM2.5abs (10-5/m)      
   Discoverya 0.00 (-0.04; 0.04) -0.01 (-0.04; 0.02) -0.03 (-0.07; 0.00) -0.01 (-0.04; 0.02) -0.04 (-0.07; 0.00) 
   Extendedb 0.00 (-0.03; 0.04) -0.01 (-0.04; 0.02) -0.02 (-0.06; 0.02) -0.01 (-0.04; 0.02) -0.02 (-0.06; 0.01) 
   Extended-Plusc 0.01 (-0.03; 0.06) 0.01 (-0.03; 0.04) -0.02 (-0.06; 0.02) 0.00 (-0.03; 0.03) -0.01 (-0.05; 0.03) 
PNAM (n/mL)      
   Discoverya -0.05 (-0.10; -0.01) -0.01 (-0.05; 0.03) 0.00 (-0.04; 0.04) 0.00 (-0.04; 0.03) -0.06 (-0.10; -0.02) 
   Extendedb -0.05 (-0.09; 0.00) 0.00 (-0.04; 0.04) 0.01 (-0.03; 0.06) 0.01 (-0.03; 0.04) -0.04 (-0.08; 0.00) 
   Extended-Plusc -0.05 (-0.10; 0.00) 0.01 (-0.03; 0.05) 0.02 (-0.03; 0.07) 0.02 (-0.02; 0.06) -0.03 (-0.08; 0.01) 
NO2 (μg/m3)      
   Discoverya -0.01 (-0.05; 0.03) 0.00 (-0.03; 0.03) -0.01 (-0.05; 0.02) 0.01 (-0.02; 0.04) -0.03 (-0.06; 0.01) 
   Extendedb 0.00 (-0.04; 0.04) 0.01 (-0.03; 0.04) 0.01 (-0.03; 0.04) 0.01 (-0.02; 0.04) -0.02 (-0.05; 0.02) 
   Extended-Plusc 0.01 (-0.04; 0.05) 0.02 (-0.02; 0.05) 0.01 (-0.03; 0.05) 0.02 (-0.01; 0.05) 0.00 (-0.04; 0.03) 
NOX (μg/m3)      
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   Discoverya -0.03 (-0.07; 0.01) -0.01 (-0.04; 0.03) -0.01 (-0.05; 0.03) 0.01 (-0.02; 0.04) -0.04 (-0.08; 0.00) 
   Extendedb -0.02 (-0.07; 0.02) 0.00 (-0.03; 0.04) 0.01 (-0.03; 0.05) 0.01 (-0.02; 0.04) -0.02 (-0.06; 0.01) 
   Extended-Plusc -0.02 (-0.07; 0.03) 0.01 (-0.03; 0.05) 0.02 (-0.02; 0.06) 0.02 (-0.02; 0.05) -0.01 (-0.05; 0.03) 
Distmajroad (m) 
≥100<200 vs ≥200       

   Discoverya 0.11 (-0.06; 0.27) 0.05 (-0.08; 0.18) -0.11 (-0.26; 0.05) -0.08 (-0.20; 0.04) -0.07 (-0.22; 0.08) 
   Extendedb 0.12 (-0.05; 0.29) 0.06 (-0.07; 0.19) -0.08 (-0.23; 0.08) -0.07 (-0.20; 0.05) -0.06 (-0.20; 0.09) 
   Extended-Plusc 0.12 (-0.04; 0.29) 0.07 (-0.07; 0.20) -0.07 (-0.23; 0.08) -0.07 (-0.19; 0.05) -0.05 (-0.20; 0.09) 
Distmajroad (m)  
<100 vs ≥200      

   Discoverya 0.12 (-0.07; 0.30) 0.05 (-0.09; 0.20) 0.00 (-0.17; 0.16) 0.12 (-0.02; 0.25) 0.04 (-0.13; 0.20) 
   Extendedb 0.11 (-0.07; 0.30) 0.05 (-0.10; 0.20) 0.01 (-0.15; 0.18) 0.11 (-0.03; 0.25) 0.02 (-0.14; 0.18) 
   Extended-Plusc 0.12 (-0.06; 0.30) 0.06 (-0.09; 0.20) 0.02 (-0.15; 0.19) 0.12 (-0.02; 0.25) 0.03 (-0.13; 0.19) 
Lnight (dB[A])      
   Discoverya 0.01 (-0.06; 0.08) -0.03 (-0.08; 0.03) -0.05 (-0.12; 0.01) -0.03 (-0.08; 0.02) -0.08 (-0.14; -0.02) 
   Extendedb 0.03 (-0.04; 0.10) -0.02 (-0.07; 0.04) -0.03 (-0.10; 0.03) -0.03 (-0.08; 0.02) -0.06 (-0.12; 0.00) 
   Extended-Plusc 0.03 (-0.04; 0.10) -0.01 (-0.07; 0.04) -0.03 (-0.10; 0.03) -0.03 (-0.08; 0.02) -0.06 (-0.12; 0.01) 
LDEN (dB[A])      
   Discoverya 0.02 (-0.04; 0.07) -0.02 (-0.06; 0.02) -0.04 (-0.09; 0.01) -0.03 (-0.07; 0.01) -0.06 (-0.11; -0.02) 
   Extendedb 0.03 (-0.02; 0.08) -0.01 (-0.06; 0.03) -0.03 (-0.07; 0.02) -0.03 (-0.07; 0.01) -0.04 (-0.09; 0.00) 
   Extended-Plusc 0.03 (-0.02; 0.08) -0.01 (-0.06; 0.03) -0.02 (-0.07; 0.02) -0.03 (-0.07; 0.01) -0.04 (-0.09; 0.00) 

Abbreviations: IQR, interquartile range; PM2.5, particulate matter with aerodynamic diameter ≤2.5 μm; PM10, particulate matter with aerodynamic diameter ≤10 
μm; PNAM, accumulation mode particle number; NOX, any nitrogen oxide; NO2, nitrogen dioxide; PM2.5abs, PM2.5 absorbance; Lnight, nighttime mean noise 
(10pm-6am); LDEN, 24h mean noise; Distmajroad, distance to the nearest major road; SD, standard deviation 
a The Discovery Model was adjusted for age, sex, and education level. 
b In addition to the variables included in the Discovery model, the Extended Model was adjusted for education level, alcohol consumption, smoking status, 
cumulative pack-years, environmental tobacco smoke, and weekly calorie expenditure by performing regular physical activity. 
c In addition to the variables included in the Extended model, the Extended-Plus Model was adjusted for neighborhood unemployment rate. 
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Table S2. Estimates of the individual neurocognitive test models of the Attention and Executive Function Domain per IQR increase in mean exposure levels with 
increasing model adjustment among the Neuropsychological Tests group (n=615) of the 1000BRAINS study. From Nußbaum et al., 2019 
 Cognitive Function 
Exposure / 
Adjustment 
Model 

Attention  Executive Function 

selective attention processing speed 
 

problem solving  figural fluency concept shifting 
susceptibility 

to interference 
PM10(μg/m3)       
   Discoverya -0.01 (-0.06; 0.04) -0.02 (-0.06; 0.03) 

 

-0.01 (-0.05; 0.04) -0.02 (-0.07; 0.02) 0.01 (-0.04; 0.06) 0.00 (-0.05; 0.05) 
   Extendedb -0.01 (-0.06; 0.04) -0.02 (-0.06; 0.03) 

 

-0.01 (-0.05; 0.04) -0.02 (-0.07; 0.02) 0.01 (-0.04; 0.06) 0.01 (-0.04; 0.05) 
   Extended-Plusc 0.01 (-0.04; 0.07) -0.03 (-0.08; 0.03) 

 

0.02 (-0.04; 0.07) -0.02 (-0.08; 0.03) 0.03 (-0.03; 0.08) 0.02 (-0.03; 0.08) 
PM2.5 (μg/m3)        
   Discoverya -0.03 (-0.09; 0.02) -0.03 (-0.08; 0.03) 

 

0.00 (-0.06; 0.05) -0.04 (-0.10; 0.01) 0.00 (-0.06; 0.06) -0.01 (-0.07; 0.04) 
   Extendedb -0.03 (-0.09; 0.03) -0.02 (-0.08; 0.04) 

 

0.00 (-0.05; 0.06) -0.04 (-0.09; 0.02) 0.01 (-0.05; 0.07) 0.00 (-0.06; 0.06) 
   Extended-Plusc -0.01 (-0.08; 0.06) -0.04 (-0.11; 0.03) 

 

0.04 (-0.03; 0.10) -0.04 (-0.11; 0.03) 0.02 (-0.04; 0.09) 0.02 (-0.04; 0.09) 
PM2.5abs (10-5/m)        
   Discoverya -0.01 (-0.06; 0.04) 0.01 (-0.04; 0.05) 

 

-0.01 (-0.06; 0.03) -0.01 (-0.06; 0.03) 0.00 (-0.05; 0.05) -0.02 (-0.07; 0.02) 
   Extendedb 0.00 (-0.05; 0.04) 0.01 (-0.03; 0.06) 

 

-0.01 (-0.06; 0.04) -0.01 (-0.06; 0.04) 0.01 (-0.04; 0.06) -0.01 (-0.06; 0.04) 
   Extended-Plusc 0.02 (-0.04; 0.07) 0.01 (-0.04; 0.06) 

 

0.01 (-0.04; 0.06) -0.01 (-0.06; 0.05) 0.02 (-0.03; 0.07) 0.00 (-0.05; 0.06) 
PNAM (n/mL)        
   Discoverya -0.07 (-0.13; -0.01) -0.04 (-0.10; 0.02) 

 

0.02 (-0.04; 0.07) -0.03 (-0.09; 0.03) -0.01 (-0.07; 0.05) -0.03 (-0.09; 0.03) 
   Extendedb -0.07 (-0.13; -0.01) -0.03 (-0.09; 0.03) 

 

0.03 (-0.03; 0.08) -0.03 (-0.08; 0.03) 0.00 (-0.06; 0.06) -0.01 (-0.07; 0.05) 
   Extended-Plusc -0.06 (-0.12; 0.01) -0.04 (-0.10; 0.03) 

 

0.05 (-0.01; 0.11) -0.02 (-0.09; 0.04) 0.01 (-0.05; 0.08) 0.00 (-0.06; 0.07) 
NO2 (μg/m3)        
   Discoverya -0.02 (-0.07; 0.03) 0.01 (-0.04; 0.06) 

 

0.00 (-0.04; 0.05) 0.00 (-0.05; 0.05) 0.01 (-0.03; 0.06) -0.02 (-0.06; 0.03) 
   Extendedb -0.01 (-0.06; 0.04) 0.02 (-0.03; 0.06) 

 

0.00 (-0.04; 0.05) 0.00 (-0.05; 0.05) 0.02 (-0.03; 0.07) 0.00 (-0.05; 0.05) 
   Extended-Plusc 0.00 (-0.05; 0.05) 0.01 (-0.04; 0.06) 

 

0.02 (-0.03; 0.07) 0.00 (-0.05; 0.06) 0.03 (-0.02; 0.09) 0.01 (-0.04; 0.06) 
NOX (μg/m3)        
   Discoverya -0.05 (-0.1; 0.01) -0.02 (-0.07; 0.04) 

 

0.01 (-0.04; 0.06) -0.03 (-0.08; 0.03) 0.01 (-0.05; 0.06) -0.01 (-0.06; 0.04) 
   Extendedb -0.03 (-0.09; 0.02) -0.01 (-0.07; 0.04) 

 

0.01 (-0.04; 0.06) -0.02 (-0.08; 0.03) 0.02 (-0.04; 0.07) 0.01 (-0.05; 0.06) 
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Abbreviations: IQR, interquartile range; PM10, particulate matter with aerodynamic diameter ≤10 μm; PM2.5, particulate matter with aerodynamic diameter ≤2.5 
μm; PM2.5abs, PM2.5 absorbance; PNAM, accumulation mode particle number; NO2, nitrogen dioxide; NOX, any nitrogen oxide; Distmajroad, distance to the nearest 
major road; Lnight, nighttime mean noise (10pm-6am); LDEN, 24h mean noise; SD, standard deviation 
a The Discovery Model was adjusted for age, sex, and education level. 
b In addition to the variables included in the Discovery model, the Extended Model was adjusted for education level, alcohol consumption, smoking status, 
cumulative pack-years, environmental tobacco smoke, and weekly calorie expenditure by performing regular physical activity. 
c In addition to the variables included in the Extended model, the Extended-Plus Model was adjusted for neighborhood unemployment rate. 

   Extended-Plusc -0.02 (-0.08; 0.03) -0.02 (-0.08; 0.04) 
 

0.03 (-0.03; 0.08) -0.02 (-0.08; 0.03) 0.03 (-0.03; 0.08) 0.02 (-0.04; 0.07) 
Distmajroad (m) 
≥100<200 vs 
≥200 

       

   Discoverya 0.02 (-0.18; 0.23) 0.20 (0.00; 0.40) 
 

-0.01 (-0.20; 0.18) 0.09 (-0.11; 0.29) 0.18 (-0.02; 0.39) -0.05 (-0.25; 0.15) 
   Extendedb 0.03 (-0.17; 0.24) 0.21 (0.01; 0.41) 

 

-0.01 (-0.20; 0.19) 0.09 (-0.12; 0.29) 0.19 (-0.02; 0.39) -0.02 (-0.22; 0.18) 
   Extended-Plusc 0.04 (-0.16; 0.25) 0.21 (0.01; 0.41) 

 

0.00 (-0.20; 0.19) 0.09 (-0.11; 0.29) 0.19 (-0.02; 0.39) -0.01 (-0.22; 0.19) 
Distmajroad (m)  
<100 vs ≥200        

   Discoverya 0.04 (-0.19; 0.27) 0.19 (-0.03; 0.41) 
 

0.11 (-0.10; 0.32) 0.22 (0.00; 0.44) -0.07 (-0.30; 0.15) -0.06 (-0.28; 0.16) 
   Extendedb 0.03 (-0.20; 0.26) 0.20 (-0.02; 0.42) 

 

0.10 (-0.12; 0.31) 0.19 (-0.04; 0.41) -0.05 (-0.28; 0.18) -0.05 (-0.27; 0.18) 
   Extended-Plusc 0.04 (-0.18; 0.27) 0.20 (-0.02; 0.42) 

 

0.11 (-0.10; 0.33) 0.19 (-0.03; 0.41) -0.04 (-0.27; 0.18) -0.04 (-0.26; 0.19) 
Lnight (dB[A])        
   Discoverya 0.03 (-0.06; 0.11) 0.00 (-0.09; 0.08) 

 

-0.03 (-0.11; 0.05) -0.02 (-0.1; 0.06) -0.04 (-0.12; 0.05) -0.01 (-0.10; 0.07) 
   Extendedb 0.05 (-0.04; 0.13) 0.01 (-0.08; 0.09) 

 

-0.03 (-0.11; 0.05) -0.01 (-0.1; 0.07) -0.03 (-0.12; 0.06) 0.01 (-0.08; 0.09) 
   Extended-Plusc 0.05 (-0.04; 0.14) 0.00 (-0.08; 0.09) 

 

-0.03 (-0.11; 0.05) -0.01 (-0.1; 0.07) -0.03 (-0.11; 0.06) 0.01 (-0.08; 0.09) 
LDEN (dB[A])        
   Discoverya 0.04 (-0.03; 0.10) -0.01 (-0.07; 0.06) 

 

-0.02 (-0.08; 0.04) -0.02 (-0.08; 0.04) -0.03 (-0.10; 0.03) -0.02 (-0.08; 0.05) 
   Extendedb 0.05 (-0.01; 0.12) 0.00 (-0.06; 0.07) 

 

-0.02 (-0.08; 0.04) -0.01 (-0.08; 0.05) -0.03 (-0.09; 0.04) 0.00 (-0.06; 0.06) 
   Extended-Plusc 0.06 (-0.01; 0.12) 0.00 (-0.06; 0.07) 

 

-0.02 (-0.08; 0.05) -0.01 (-0.08; 0.05) -0.02 (-0.09; 0.04) 0.00 (-0.06; 0.07) 
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Table S3. Estimates of the individual neurocognitive test models of the Memory. Domain per IQR 
increase in mean exposure levels with increasing model adjustment among the 
Neuropsychological Tests group (n=615) of the 1000BRAINS study. From Nußbaum et al., 2019 
 Cognitive Function – Memory 
Exposure / 
Adjustment Model figural memory verbal learning verbal learning, 

delayed 
PM10(μg/m3)    
   Discoverya -0.02 (-0.07; 0.02) -0.02 (-0.07; 0.02) -0.01 (-0.06; 0.04) 
   Extendedb -0.02 (-0.06; 0.02) -0.01 (-0.06; 0.04) 0.00 (-0.05; 0.05) 
   Extended-Plusc -0.02 (-0.07; 0.03) 0.00 (-0.05; 0.05) 0.01 (-0.05; 0.06) 
PM2.5 (μg/m3)    
   Discoverya -0.05 (-0.10; 0.01) -0.03 (-0.09; 0.02) -0.01 (-0.07; 0.05) 
   Extendedb -0.04 (-0.09; 0.02) -0.01 (-0.07; 0.04) 0.01 (-0.05; 0.06) 
   Extended-Plusc -0.04 (-0.10; 0.02) 0.00 (-0.06; 0.07) 0.02 (-0.05; 0.09) 
PM2.5abs (10-5/m)    
   Discoverya -0.03 (-0.07; 0.01) -0.04 (-0.08; 0.01) -0.03 (-0.08; 0.01) 
   Extendedb -0.02 (-0.07; 0.02) -0.02 (-0.07; 0.03) -0.02 (-0.06; 0.03) 
   Extended-Plusc -0.03 (-0.07; 0.02) -0.01 (-0.06; 0.04) -0.02 (-0.07; 0.04) 
PNAM (n/mL)    
   Discoverya -0.02 (-0.07; 0.03) 0.00 (-0.06; 0.06) 0.02 (-0.04; 0.08) 
   Extendedb -0.01 (-0.06; 0.04) 0.02 (-0.04; 0.07) 0.03 (-0.03; 0.09) 
   Extended-Plusc -0.01 (-0.07; 0.05) 0.03 (-0.03; 0.09) 0.04 (-0.02; 0.11) 
NO2 (μg/m3)    
   Discoverya 0.00 (-0.05; 0.04) -0.02 (-0.06; 0.03) -0.02 (-0.06; 0.03) 
   Extendedb 0.00 (-0.04; 0.05) 0.01 (-0.04; 0.05) 0.00 (-0.04; 0.05) 
   Extended-Plusc 0.01 (-0.04; 0.06) 0.01 (-0.04; 0.07) 0.01 (-0.04; 0.06) 
NOX (μg/m3)    
   Discoverya -0.01 (-0.05; 0.04) -0.01 (-0.06; 0.04) 0.00 (-0.06; 0.05) 
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Abbreviations: IQR, interquartile range; PM10, particulate matter with aerodynamic diameter ≤10 μm; PM2.5, particulate matter with aerodynamic diameter ≤2.5 
μm; PM2.5abs, PM2.5 absorbance; PNAM, accumulation mode particle number; NO2, nitrogen dioxide; NOX, any nitrogen oxide; Distmajroad, distance to the nearest 
major road; Lnight, nighttime mean noise (10pm-6am); LDEN, 24h mean noise; SD, standard deviation 
a The Discovery Model was adjusted for age, sex, and education level. 
b In addition to the variables included in the Discovery model, the Extended Model was adjusted for education level, alcohol consumption, smoking status, 
cumulative pack-years, environmental tobacco smoke, and weekly calorie expenditure by performing regular physical activity. 
c In addition to the variables included in the Extended model, the Extended-Plus Model was adjusted for neighborhood unemployment rate 
 
 

   Extendedb 0.00 (-0.05; 0.05) 0.01 (-0.04; 0.07) 0.02 (-0.03; 0.07) 
   Extended-Plusc 0.01 (-0.05; 0.06) 0.03 (-0.03; 0.08) 0.03 (-0.03; 0.08) 
Distmajroad (m) 
≥100<200 vs ≥200    

   Discoverya -0.10 (-0.28; 0.08) -0.11 (-0.31; 0.09) -0.11 (-0.31; 0.09) 
   Extendedb -0.09 (-0.27; 0.10) -0.07 (-0.26; 0.13) -0.07 (-0.27; 0.13) 
   Extended-Plusc -0.09 (-0.27; 0.10) -0.06 (-0.26; 0.14) -0.07 (-0.27; 0.13) 
Distmajroad (m)  
<100 vs ≥200    

   Discoverya 0.03 (-0.17; 0.23) -0.01 (-0.23; 0.21) -0.03 (-0.25; 0.19) 
   Extendedb 0.02 (-0.18; 0.23) 0.02 (-0.20; 0.24) 0.00 (-0.22; 0.22) 
   Extended-Plusc 0.03 (-0.18; 0.23) 0.03 (-0.19; 0.25) 0.00 (-0.22; 0.23) 
Lnight (dB[A])    
   Discoverya -0.05 (-0.13; 0.02) -0.04 (-0.12; 0.04) -0.06 (-0.15; 0.02) 
   Extendedb -0.05 (-0.12; 0.03) -0.01 (-0.09; 0.07) -0.04 (-0.12; 0.05) 
   Extended-Plusc -0.05 (-0.12; 0.03) -0.01 (-0.09; 0.08) -0.04 (-0.12; 0.05) 
LDEN (dB[A])    
   Discoverya -0.04 (-0.10; 0.02) -0.03 (-0.10; 0.03) -0.05 (-0.11; 0.01) 
   Extendedb -0.03 (-0.09; 0.02) -0.01 (-0.07; 0.05) -0.03 (-0.10; 0.03) 
   Extended-Plusc -0.03 (-0.09; 0.03) -0.01 (-0.07; 0.05) -0.03 (-0.10; 0.03) 
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Table S4. Estimates of the individual neurocognitive test models of the  Short Term/Working Memory Domain per IQR increase in mean 
exposure levels with increasing model adjustment among the Neuropsychological Tests group (n=615) of the 1000BRAINS study. From 
Nußbaum et al., 2019 
 Cognitive Function – Short-Term/Working Memory 
Exposure / 
Adjustment Model visual WM visual spatial STM visual spatial WM verbal STM verbal WM 
PM10(μg/m3)      
   Discoverya -0.02 (-0.07; 0.03) 0.05 (0.00; 0.10) 0.00 (-0.05; 0.05) -0.03 (-0.08; 0.02) -0.01 (-0.06; 0.04) 
   Extendedb -0.02 (-0.07; 0.02) 0.04 (-0.01; 0.10) 0.00 (-0.05; 0.05) -0.03 (-0.08; 0.02) -0.02 (-0.06; 0.03) 
   Extended-Plusc -0.02 (-0.07; 0.03) 0.04 (-0.02; 0.10) 0.00 (-0.05; 0.06) 0.00 (-0.06; 0.06) -0.01 (-0.06; 0.05) 
PM2.5 (μg/m3)      
   Discoverya -0.03 (-0.09; 0.02) 0.06 (0.00; 0.12) 0.01 (-0.05; 0.07) -0.06 (-0.12; 0.00) -0.01 (-0.07; 0.04) 
   Extendedb -0.03 (-0.09; 0.03) 0.06 (0.00; 0.12) 0.02 (-0.04; 0.08) -0.06 (-0.12; 0.00) -0.01 (-0.07; 0.04) 
   Extended-Plusc -0.02 (-0.09; 0.04) 0.06 (-0.01; 0.13) 0.03 (-0.04; 0.09) -0.02 (-0.09; 0.05) 0.00 (-0.07; 0.06) 
PM2.5abs (10-5/m)      
   Discoverya -0.02 (-0.06; 0.03) 0.03 (-0.02; 0.08) -0.01 (-0.06; 0.04) -0.04 (-0.09; 0.01) 0.00 (-0.05; 0.04) 
   Extendedb -0.02 (-0.07; 0.03) 0.02 (-0.03; 0.07) 0.00 (-0.05; 0.04) -0.03 (-0.08; 0.01) 0.00 (-0.05; 0.05) 
   Extended-Plusc -0.01 (-0.06; 0.04) 0.01 (-0.04; 0.07) 0.00 (-0.06; 0.05) -0.01 (-0.06; 0.05) 0.01 (-0.04; 0.07) 
PNAM (n/mL)      
   Discoverya -0.04 (-0.10; 0.02) 0.06 (0.00; 0.12) 0.03 (-0.03; 0.09) -0.07 (-0.13; -0.01) 0.00 (-0.06; 0.06) 
   Extendedb -0.03 (-0.09; 0.03) 0.07 (0.01; 0.13) 0.04 (-0.02; 0.10) -0.06 (-0.12; 0.00) 0.01 (-0.05; 0.07) 
   Extended-Plusc -0.02 (-0.08; 0.04) 0.06 (0.00; 0.13) 0.05 (-0.01; 0.12) -0.04 (-0.10; 0.03) 0.02 (-0.04; 0.08) 
NO2 (μg/m3)      
   Discoverya -0.01 (-0.06; 0.03) 0.04 (0.00; 0.09) 0.02 (-0.03; 0.07) -0.05 (-0.10; 0.00) 0.03 (-0.02; 0.08) 
   Extendedb -0.01 (-0.06; 0.04) 0.04 (-0.01; 0.09) 0.02 (-0.02; 0.07) -0.05 (-0.10; 0.00) 0.04 (-0.01; 0.08) 
   Extended-Plusc 0.00 (-0.05; 0.05) 0.04 (-0.02; 0.09) 0.03 (-0.02; 0.08) -0.03 (-0.08; 0.03) 0.05 (0.00; 0.10) 
NOX (μg/m3)      
   Discoverya -0.04 (-0.09; 0.02) 0.06 (0.01; 0.12) 0.04 (-0.01; 0.10) -0.06 (-0.11; 0.00) 0.03 (-0.03; 0.08) 
   Extendedb -0.03 (-0.08; 0.02) 0.06 (0.01; 0.12) 0.05 (-0.01; 0.10) -0.06 (-0.11; 0.00) 0.03 (-0.02; 0.09) 
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Abbreviations: IQR, interquartile range; WM, working memory; STM, short-term memory; PM10, particulate matter with aerodynamic diameter ≤10 μm; PM2.5, 
particulate matter with aerodynamic diameter ≤2.5 μm; PM2.5abs, PM2.5 absorbance; PNAM, accumulation mode particle number; NO2, nitrogen dioxide; NOX, 
any nitrogen oxide; Distmajroad, distance to the nearest major road; Lnight, nighttime mean noise (10pm-6am); LDEN, 24h mean noise; SD, standard deviation 
 a The Discovery Model was adjusted for age, sex, and education level. 
b In addition to the variables included in the Discovery model, the Extended Model was adjusted for education level, alcohol consumption, smoking status, 
cumulative pack-years, environmental tobacco smoke, and weekly calorie expenditure by performing regular physical activity. 
c In addition to the variables included in the Extended model, the Extended-Plus Model was adjusted for neighborhood unemployment rate. 
 
 
 

   Extended-Plusc -0.03 (-0.08; 0.03) 0.06 (0.00; 0.12) 0.05 (0.00; 0.11) -0.04 (-0.10; 0.02) 0.05 (-0.01; 0.10) 
Distmajroad (m) 
≥100<200 vs ≥200      

   Discoverya -0.08 (-0.28; 0.12) -0.08 (-0.28; 0.13) -0.09 (-0.29; 0.12) -0.02 (-0.23; 0.19) -0.13 (-0.33; 0.07) 
   Extendedb -0.06 (-0.26; 0.14) -0.06 (-0.27; 0.15) -0.08 (-0.29; 0.13) -0.03 (-0.24; 0.19) -0.14 (-0.34; 0.06) 
   Extended-Plusc -0.05 (-0.25; 0.15) -0.07 (-0.28; 0.14) -0.08 (-0.29; 0.13) -0.01 (-0.23; 0.20) -0.13 (-0.33; 0.06) 
Distmajroad (m)  
<100 vs ≥200      

   Discoverya 0.22 (0.00; 0.43) 0.17 (-0.05; 0.40) 0.13 (-0.09; 0.36) -0.02 (-0.25; 0.21) 0.09 (-0.13; 0.30) 
   Extendedb 0.22 (0.00; 0.44) 0.15 (-0.08; 0.39) 0.12 (-0.11; 0.35) -0.04 (-0.27; 0.20) 0.09 (-0.13; 0.31) 
   Extended-Plusc 0.23 (0.01; 0.45) 0.14 (-0.09; 0.38) 0.12 (-0.11; 0.35) -0.01 (-0.25; 0.22) 0.10 (-0.12; 0.32) 
Lnight (dB[A])      
   Discoverya -0.08 (-0.16; 0.00) -0.02 (-0.10; 0.07) 0.00 (-0.09; 0.08) -0.03 (-0.12; 0.06) -0.03 (-0.12; 0.05) 
   Extendedb -0.08 (-0.16; 0.01) -0.02 (-0.11; 0.07) 0.00 (-0.09; 0.09) -0.02 (-0.11; 0.07) -0.03 (-0.11; 0.06) 
   Extended-Plusc -0.08 (-0.16; 0.01) -0.02 (-0.11; 0.06) 0 .00(-0.09; 0.09) -0.02 (-0.11; 0.07) -0.03 (-0.11; 0.06) 
LDEN (dB[A])      
   Discoverya -0.06 (-0.12; 0.00) -0.02 (-0.09; 0.04) -0.01 (-0.08; 0.05) -0.03 (-0.10; 0.04) -0.03 (-0.09; 0.03) 
   Extendedb -0.06 (-0.12; 0.01) -0.03 (-0.09; 0.04) -0.01 (-0.08; 0.06) -0.02 (-0.09; 0.04) -0.03 (-0.09; 0.03) 
   Extended-Plusc -0.06 (-0.12; 0.01) -0.03 (-0.09; 0.04) -0.01 (-0.08; 0.06) -0.02 (-0.09; 0.05) -0.03 (-0.09; 0.04) 



73 
  
 

 

 

Table S5. Estimates of the individual neurocognitive test models of the Language Domain per IQR increase in mean exposure levels with increasing 
model adjustment among the Neuropsychological Tests group (n=615) of the 1000BRAINS study. From Nußbaum et al., 2019 
 Cognitive Function – Language Exposure / 
Adjustment Model phonemic verbal fluency + concept shifting semantic verbal fluency + concept shifting vocabulary 
PM10(μg/m3)      
   Discoverya -0.02 (-0.07; 0.03) -0.01 (-0.06; 0.04) -0.03 (-0.08; 0.02) -0.04 (-0.09; 0.01) -0.02 (-0.06; 0.03) 
   Extendedb -0.01 (-0.06; 0.04) 0.00 (-0.05; 0.05) -0.03 (-0.07; 0.02) -0.03 (-0.08; 0.01) -0.01 (-0.05; 0.03) 
   Extended-Plusc 0.01 (-0.05; 0.06) 0.01 (-0.04; 0.07) -0.02 (-0.07; 0.04) -0.02 (-0.07; 0.04) 0.01 (-0.04; 0.06) 
PM2.5 (μg/m3)      
   Discoverya -0.07 (-0.12; -0.01) -0.05 (-0.11; 0.01) -0.06 (-0.11; 0.00) -0.06 (-0.12; 0.00) -0.04 (-0.09; 0.01) 
   Extendedb -0.05 (-0.11; 0.01) -0.03 (-0.08; 0.03) -0.04 (-0.10; 0.02) -0.04 (-0.10; 0.02) -0.03 (-0.08; 0.02) 
   Extended-Plusc -0.03 (-0.10; 0.04) -0.02 (-0.08; 0.05) -0.03 (-0.10; 0.03) -0.02 (-0.08; 0.05) 0.00 (-0.06; 0.06) 
PM2.5abs (10-5/m)      
   Discoverya -0.04 (-0.09; 0.00) -0.03 (-0.08; 0.02) -0.03 (-0.08; 0.01) -0.04 (-0.09; 0.00) -0.04 (-0.08; 0.00) 
   Extendedb -0.03 (-0.08; 0.02) -0.01 (-0.06; 0.03) -0.02 (-0.07; 0.03) -0.03 (-0.08; 0.02) -0.03 (-0.07; 0.01) 
   Extended-Plusc -0.01 (-0.07; 0.04) 0.00 (-0.06; 0.05) -0.01 (-0.07; 0.04) -0.01 (-0.07; 0.04) -0.01 (-0.06; 0.03) 
PNAM (n/mL)      
   Discoverya -0.09 (-0.15; -0.03) -0.06 (-0.12; 0.00) -0.07 (-0.13; -0.01) -0.05 (-0.11; 0.01) -0.02 (-0.07; 0.03) 
   Extendedb -0.08 (-0.14; -0.02) -0.04 (-0.10; 0.02) -0.05 (-0.11; 0.01) -0.03 (-0.09; 0.03) -0.01 (-0.06; 0.04) 
   Extended-Plusc -0.07 (-0.14; -0.01) -0.04 (-0.10; 0.03) -0.05 (-0.11; 0.02) -0.01 (-0.07; 0.06) 0.01 (-0.04; 0.07) 
NO2 (μg/m3)      
   Discoverya -0.04 (-0.08; 0.01) -0.03 (-0.08; 0.02) -0.04 (-0.09; 0.01) -0.03 (-0.08; 0.02) -0.01 (-0.05; 0.03) 
   Extendedb -0.02 (-0.07; 0.03) -0.02 (-0.06; 0.03) -0.02 (-0.07; 0.03) -0.02 (-0.06; 0.03) 0.00 (-0.04; 0.04) 
   Extended-Plusc -0.01 (-0.06; 0.04) -0.01 (-0.06; 0.04) -0.02 (-0.07; 0.03) 0.00 (-0.05; 0.05) 0.01 (-0.03; 0.06) 
NOX (μg/m3)      
   Discoverya -0.04 (-0.10; 0.01) -0.03 (-0.09; 0.02) -0.06 (-0.11; -0.01) -0.05 (-0.10; 0.01) -0.01 (-0.06; 0.03) 
   Extendedb -0.03 (-0.08; 0.03) -0.01 (-0.07; 0.04) -0.05 (-0.10; 0.01) -0.03 (-0.08; 0.02) 0.00 (-0.05; 0.04) 
   Extended-Plusc -0.02 (-0.08; 0.04) 0.00 (-0.06; 0.05) -0.04 (-0.10; 0.01) -0.02 (-0.07; 0.04) 0.01 (-0.04; 0.06) 
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Abbreviations: IQR, interquartile range; PM10, particulate matter with aerodynamic diameter ≤10 μm; PM2.5, particulate matter with aerodynamic diameter ≤2.5 
μm; PM2.5abs, PM2.5 absorbance; PNAM, accumulation mode particle number; NO2, nitrogen dioxide; NOX, any nitrogen oxide; Distmajroad, distance to the nearest 
major road; Lnight, nighttime mean noise (10pm-6am); LDEN, 24h mean noise; SD, standard deviation 
a The Discovery Model was adjusted for age, sex, and education level. 
b In addition to the variables included in the Discovery model, the Extended Model was adjusted for education level, alcohol consumption, smoking status, 
cumulative pack-years, environmental tobacco smoke, and weekly calorie expenditure by performing regular physical activity. 
c In addition to the variables included in the Extended model, the Extended-Plus Model was adjusted for neighborhood unemployment rate. 
 
 
 
 
 

Distmajroad (m) 
≥100<200 vs ≥200      

   Discoverya 0.03 (-0.18; 0.24) -0.02 (-0.23; 0.18) -0.16 (-0.36; 0.05) -0.19 (-0.40; 0.01) -0.02 (-0.20; 0.16) 
   Extendedb 0.05 (-0.16; 0.26) 0.00 (-0.21; 0.20) -0.14 (-0.34; 0.06) -0.18 (-0.38; 0.02) -0.02 (-0.20; 0.16) 
   Extended-Plusc 0.06 (-0.15; 0.26) 0.00 (-0.20; 0.21) -0.14 (-0.34; 0.07) -0.17 (-0.37; 0.03) -0.01 (-0.19; 0.16) 
Distmajroad (m)  
<100 vs ≥200      

   Discoverya -0.01 (-0.24; 0.22) -0.04 (-0.27; 0.19) 0.12 (-0.11; 0.34) 0.15 (-0.07; 0.38) -0.03 (-0.22; 0.17) 
   Extendedb -0.02 (-0.25; 0.21) -0.08 (-0.30; 0.15) 0.10 (-0.12; 0.33) 0.13 (-0.09; 0.35) -0.03 (-0.22; 0.17) 
   Extended-Plusc -0.01 (-0.24; 0.22) -0.07 (-0.29; 0.16) 0.11 (-0.11; 0.34) 0.14 (-0.08; 0.37) -0.01 (-0.21; 0.18) 
Lnight (dB[A])      
   Discoverya -0.10 (-0.19; -0.02) -0.05 (-0.13; 0.04) -0.07 (-0.16; 0.01) -0.05 (-0.14; 0.03) -0.12 (-0.19; -0.05) 
   Extendedb -0.09 (-0.17; 0.00) -0.02 (-0.11; 0.06) -0.05 (-0.13; 0.04) -0.03 (-0.11; 0.06) -0.10 (-0.18; -0.03) 
   Extended-Plusc -0.08 (-0.17; 0.00) -0.02 (-0.11; 0.06) -0.05 (-0.13; 0.04) -0.03 (-0.11; 0.06) -0.10 (-0.17; -0.03) 
LDEN (dB[A])      
   Discoverya -0.08 (-0.14; -0.01) -0.04 (-0.11; 0.02) -0.05 (-0.12; 0.01) -0.04 (-0.11; 0.02) -0.09 (-0.15; -0.04) 
   Extendedb -0.06 (-0.13; 0.00) -0.02 (-0.09; 0.04) -0.03 (-0.09; 0.03) -0.02 (-0.08; 0.04) -0.08 (-0.14; -0.02) 
   Extended-Plusc -0.06 (-0.13; 0.00) -0.02 (-0.09; 0.04) -0.03 (-0.09; 0.04) -0.02 (-0.08; 0.05) -0.08 (-0.13; -0.02) 
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Table S6. Estimates of lGI Models per IQR increase in mean exposure levels with increasing model adjustment among the MRI participant group (n=590) of the 
1000BRAINS study. From Nußbaum et al., 2019 
 lGI Regions 
 Left Hemisphere  Right Hemisphere 
Exposure / 
Adjustment Model DLPFC PCC/P IPL DLPFC PCC/P IPL 

PM10 (μg/m3)        
   Crudea -0.00 (-0.02; 0.01) -0.01 (-0.03; 0.01) 0.00 (-0.01; 0.01)  -0.01 (-0.02; 0.01) -0.02 (-0.03; 0.00) -0.01 (-0.03; 0.00) 
   Baseb -0.00 (-0.01; 0.01) -0.00 (-0.02; 0.01) 0.00 (-0.01; 0.01)  -0.01 (-0.02; 0.01) -0.01 (-0.03; 0.01) -0.01 (-0.02; 0.00) 
   Mainc -0.00 (-0.02; 0.01) -0.01 (-0.03; 0.01) -0.00 (-0.02; 0.01)  -0.01 (-0.02; 0.01) -0.02 (-0.04; 0.00) -0.02 (-0.03; 0.00) 
PM2.5 (μg/m3)        
   Crudea -0.01 (-0.02; 0.01) -0.01 (-0.03; 0.01) 0.00 (-0.01; 0.02)  -0.01 (-0.02; 0.01) -0.01 (-0.03; 0.00) -0.01 (-0.03; 0.00) 
   Baseb -0.00 (-0.02; 0.01) -0.00 (-0.02; 0.02) 0.00 (-0.01; 0.02)  -0.01 (-0.02; 0.01) -0.01 (-0.03; 0.01) -0.01 (-0.03; 0.01) 
   Mainc -0.01 (-0.02; 0.01) -0.01 (-0.03; 0.01) -0.00 (-0.02; 0.01)  -0.01 (-0.03; 0.01) -0.02 (-0.04; 0.00) -0.02 (-0.04; 0.00) 
PM2.5abs (10-5/m)        
   Crudea -0.00 (-0.02; 0.01) -0.01 (-0.02; 0.01) 0.00 (-0.01; 0.02)  -0.00 (-0.02; 0.01) -0.01 (-0.03; 0.01) -0.00 (-0.02; 0.01) 
   Baseb -0.00 (-0.01; 0.01) -0.00 (-0.02; 0.01) 0.00 (-0.01; 0.02)  -0.00 (-0.02; 0.01) -0.00 (-0.02; 0.01) -0.00 (-0.01; 0.01) 
   Mainc -0.00 (-0.02; 0.01) -0.01 (-0.03; 0.01) 0.00 (-0.01; 0.02)  -0.00 (-0.02; 0.01) -0.01 (-0.03; 0.01) -0.01 (-0.02; 0.01) 
PNAM (n/mL)        
   Crudea -0.01 (-0.02; 0.01) -0.00 (-0.02; 0.02) -0.00 (-0.02; 0.01)  -0.02 (-0.03; 0.00) -0.01 (-0.03; 0.01) -0.01 (-0.02; 0.01) 
   Baseb -0.01 (-0.02; 0.01) -0.00 (-0.02; 0.02) -0.00 (-0.02; 0.01)  -0.02 (-0.03; 0.00) -0.01 (-0.03; 0.01) -0.01 (-0.02; 0.01) 
   Mainc -0.01 (-0.03; 0.01) -0.01 (-0.03; 0.02) -0.00 (-0.02; 0.01)  -0.02 (-0.04; 0.00) -0.01 (-0.04; 0.01) -0.01 (-0.03; 0.01) 
NO2 (μg/m3)        
   Crudea -0.01 (-0.02; 0.00) -0.02 (-0.03; 0.00) -0.00 (-0.02; 0.01)  -0.01 (-0.02; 0.01) -0.02 (-0.04; 0.00) -0.01 (-0.03; 0.00) 
   Baseb -0.01 (-0.02; 0.00) -0.01 (-0.03; 0.01)   -0.00 (-0.01; 0.01)  -0.01 (-0.02; 0.01) -0.01 (-0.03; 0.00) -0.01 (-0.02; 0.00) 
   Mainc -0.01 (-0.02; 0.00) -0.01 (-0.03; 0.00)   -0.00 (-0.02; 0.01)  -0.01 (-0.02; 0.01) -0.02 (-0.04; 0.00) -0.01 (-0.03; 0.00) 
NOX (μg/m3)        
   Crudea -0.01 (-0.02; 0.00) -0.02 (-0.04; 0.00) -0.00 (-0.02; 0.01)  -0.01 (-0.02; 0.01) -0.03 (-0.04; -0.01) -0.02 (-0.03; 0.00) 
   Baseb -0.01 (-0.02; 0.01) -0.01 (-0.03; 0.01) -0.00 (-0.01; 0.01)  -0.01 (-0.02; 0.01) -0.02 (-0.04; 0.00) -0.01 (-0.03; 0.00) 
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   Mainc -0.01 (-0.02; 0.01) -0.02 (-0.04; 0.00) -0.00 (-0.02; 0.01)  -0.01 (-0.02; 0.01) -0.02 (-0.04; -0.01) -0.02 (-0.03; 0.00) 
Distmajroad (m) 
≥100<200 vs ≥200        

   Crudea -0.01 (-0.07; 0.04) -0.00 (-0.07; 0.07) -0.05 (-0.10; 0.01)  -0.06 (-0.11; -0.01) -0.06 (-0.13; 0.00) -0.02 (-0.08; 0.04) 
   Baseb -0.01 (-0.06; 0.04) -0.00 (-0.07; 0.07) -0.05 (-0.10; 0.01)  -0.06 (-0.11; -0.01) -0.07 (-0.14; 0.00) -0.02 (-0.08; 0.03) 
   Mainc -0.01 (-0.06; 0.04) 0.00 (-0.07; 0.07) -0.04 (-0.09; 0.01)  -0.06 (-0.12; -0.01) -0.07 (-0.13; 0.00) -0.02 (-0.08; 0.04) 
Distmajroad (m) 
<100  vs ≥200        

   Crudea -0.05 (-0.10; 0.01) -0.05 (-0.13; 0.03) -0.01 (-0.06; 0.05)  -0.02 (-0.08; 0.03) -0.03 (-0.11; 0.04) -0.01 (-0.07; 0.06) 
   Baseb -0.04 (-0.10; 0.02) -0.04 (-0.12; 0.04) -0.01 (-0.06; 0.05)  -0.02 (-0.08; 0.04) -0.02 (-0.09; 0.06) -0.00 (-0.06; 0.06) 
   Mainc -0.03 (-0.09; 0.02) -0.03 (-0.10; 0.05) -0.00 (-0.06; 0.06)  -0.02 (-0.08; 0.04) -0.01 (-0.09; 0.06) -0.00 (-0.07; 0.06) 
Lnight (dB[A])        
   Crudea 0.01 (-0.01; 0.03) -0.02 (-0.05; 0.01) 0.01 (-0.01; 0.03)  0.02 (0.00; 0.05) -0.02 (-0.05; 0.01) 0.01 (-0.02; 0.03) 
   Baseb 0.01 (-0.01; 0.04) -0.01 (-0.04; 0.01) 0.01 (-0.01; 0.03)  0.03 (0.00; 0.05) -0.02 (-0.05; 0.01) 0.01 (-0.02; 0.03) 
   Mainc 0.01 (-0.01; 0.04) -0.01 (-0.04; 0.02) 0.01 (-0.01; 0.04)  0.03 (0.00; 0.05) -0.02 (-0.05; 0.01) 0.01 (-0.02; 0.03) 
LDEN (dB[A])        
   Crudea 0.01 (-0.01; 0.03) -0.01 (-0.03; 0.01) 0.01 (-0.01; 0.02)  0.02 (0.00; 0.04) -0.02 (-0.04; 0.00) 0.01 (-0.01; 0.02) 
   Baseb 0.01 (-0.01; 0.03) -0.01 (-0.03; 0.01) 0.01 (-0.01; 0.03)  0.02 (0.01; 0.04) -0.01 (-0.03; 0.01) 0.01 (-0.01; 0.02) 
   Mainc 0.01 (0.00; 0.03) -0.01 (-0.03; 0.01) 0.01 (-0.01; 0.03)  0.02 (0.00; 0.04) -0.01 (-0.03; 0.01) 0.01 (-0.01; 0.02) 

Abbreviations: lGI, local Gyrification Index; IQR, interquartile range; DLPFC, dorsolateral prefrontal cortex; PCC/P, posterior cingulate cortex and precuneus; 
IPL, inferior parietal lobule; PM10, particulate matter with aerodynamic diameter ≤10 μm; PM2.5, particulate matter with aerodynamic diameter ≤2.5 μm; 
PM2.5abs, PM2.5 absorbance; PNAM, accumulation mode particle number; NO2, nitrogen dioxide; NOX, any nitrogen oxide; Distmajroad, distance to the nearest 
major road; Lnight, nighttime mean noise (10pm-6am); LDEN, 24h mean noise; SD, standard deviation 
a The Crude Model included only the exposure variable. 
b The Base Model was adjusted for age, sex, and education level. 
c The Main Model was adjusted for age, sex, education level, alcohol consumption, smoking status, cumulative pack-years, environmental tobacco smoke, 
weekly calorie expenditure by performing regular physical activity, and neighborhood unemployment rate. 
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